【题目】设F(x)=f(x)+f(﹣x)在区间 是单调递减函数,将F(x)的图象按向量 平移后得到函数G(x)的图象,则G(x)的一个单调递增区间是( )
A.
B.
C.
D.
【答案】D
【解析】解答:由于F(﹣x)=F(x),∴F(x)是偶函数,其图象关于y轴对称, ∴[ ,π]是函数F(x)的单调递减区间.
又∵F(x)的图象按向量 =( ,0)平移得到一个新的函数G(x)的图象,
∴G(x)的一个单调递增区间是[ ﹣π,π﹣π],即[ ,0].
故选D.
分析:先根据偶函数的定义,得到F(x)是偶函数,然后根据平移后的图象与原图象之间的关系即可得到G(x)的一个单调递增区间.
【考点精析】本题主要考查了函数y=Asin(ωx+φ)的图象变换的相关知识点,需要掌握图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象才能正确解答此题.
科目:高中数学 来源: 题型:
【题目】已知抛物线C: ,过点的动直线l与C相交于两点,抛物线C在点A和点B处的切线相交于点Q.
(Ⅰ)写出抛物线的焦点坐标和准线方程;
(Ⅱ)求证:点Q在直线上;
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某班学生进行了三次数学测试,第一次有8名学生得满分,第二次有10名学生得满分,第三次有12名学生得满分,已知前两次均为满分的学生有5名,三次测试中至少又一次得满分的学生有15名.若后两次均为满分的学生至多有名,则的值为( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l: (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为ρ=2cosθ.
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为(5, ),直线l与曲线C的交点为A,B,求|MA||MB|的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过点M( ,0)的直线l与抛物线y2=2px(p>0)交于A,B两点,且 =﹣3,其中O为坐标原点.
(1)求p的值;
(2)当|AM|+4|BM|最小时,求直线l的方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com