精英家教网 > 高中数学 > 题目详情
19.已知函数$f(x)=sin2x+2{sin^2}\frac{1}{2}x$,则$f(\frac{π}{2017})+f(\frac{2π}{2017})+f(\frac{3π}{2017})+…+f(\frac{2016π}{2017})$=2016.

分析 推导出f(π-x)+f(x)=2,由此能求出$f(\frac{π}{2017})+f(\frac{2π}{2017})+f(\frac{3π}{2017})+…+f(\frac{2016π}{2017})$的值.

解答 解:∵$f(x)=sin2x+2{sin^2}\frac{1}{2}x=2sinxcosx+1-cosx$,
f(π-x)=2sin(π-x)cos(π-x)+1-cos(π-x)=-2sinxcosx+1+cosx,
∴f(π-x)+f(x)=2,
∴$f({\frac{π}{2017}})+f({\frac{2π}{2017}})+f({\frac{3π}{2017}})$$+…+f({\frac{2016π}{2017}})=2×1008=2016$.
故答案为:2016.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图(1),三棱锥P-ABC中,PC⊥平面ABC,F,G,H,分别是PC,AC,BC的中点,I是线段FG上任意一点,PC=AB=2BC,过点F作平行于底面ABC的平面截三棱锥,得到几何体DEF-ABC,如图(2)所示.
(1)求证:HI∥平面ABD;
(2)若AC⊥BC,求二面角A-DE-F的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知椭圆与双曲线$\frac{x^2}{3}-\frac{y^2}{2}=1$有共同的焦点,且离心率为$\frac{{\sqrt{5}}}{5}$,则椭圆的标准方程为(  )
A.$\frac{x^2}{20}+\frac{y^2}{25}=1$B.$\frac{x^2}{25}+\frac{y^2}{5}=1$C.$\frac{x^2}{25}+\frac{y^2}{20}=1$D.$\frac{x^2}{5}+\frac{y^2}{25}=1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知$\frac{sinα-2cosα}{2sinα+3cosα}=2$,那么tanα的值为(  )
A.-2B.$-\frac{8}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$sinα-2cosα=\frac{{\sqrt{10}}}{2}$,则tan2α=(  )
A.$\frac{4}{3}$B.$-\frac{3}{4}$C.$\frac{3}{4}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(x)=ex+ln(x+1)的图象在(0,f(0))处的切线与直线x-ny+4=0垂直,则n的值为-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点F(-2,0)在以原点为圆心的圆O内,且过F的最短的弦长为2.
(1)求圆O的方程;
(2)过F任作一条与两坐标标轴都不垂直的弦AB,若点M在x轴上,且使得MF为△AMB的一条内角平分线,求M点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若抛物线y2=4x上的点M到焦点的距离为10,则M到y轴的距离是(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知集合U=R(R是实数集),A={x|-1≤x≤1},B={x|x2-2x<0},则A∪(∁UB)=(  )
A.[-1,0]B.[1,2]C.[0,1]D.(-∞,1]∪[2,+∞)

查看答案和解析>>

同步练习册答案