精英家教网 > 高中数学 > 题目详情
已知数列{an}是由正数组成的等比数列,Sn是其前n项和.
(1)当首项a1=2,公比q=
1
2
时,对任意的正整数k都有
Sk+1-c
Sk-c
<2
(0<c<2)成立,求c的取值范围;
(2)判断SnSn+2-
S
2
n+1
(n∈N*)
的符号,并加以证明;
(3)是否存在正常数m及自然数n,使得lg(Sn-m)+lg(Sn+2-m)=2lg(Sn+1-m)成立?若存在,请求出相应的m,n;若不存在,说明理由.
分析:(1)利用等比数列的前n项和公式及不等式的性质即可得出;
(2)通过对公比q分类讨论,利用等比数列的前n和公式即可得出;
(3)假设存在一个正常数m满足题意,利用已知条件就基本不等式的性质得出矛盾,从而可知不存在正常数m满足题意.
解答:解:(1)∵数列{an}的首项a1=2,公比q=
1
2
,∴Sk=
2(1-
1
2k
)
1-
1
2
=4(1-
1
2k
)
≥2,
而0<c<2,对任意的正整数k都有
Sk+1-c
Sk-c
<2
成立,∴Sk+1-c<2Sk-2c,化为c<2Sk-Sk+1
把Sk,Sk+1代入计算得c<4-
6
2k

先研究函数g(x)=4-
6
2x
的单调性,x∈(0,+∞).
∵y=2x在x∈(0,+∞)上单调递增,∴函数y=
6
2x
在x∈(0,+∞)上单调递减,
∴函数y=-
6
2x
+4
在x∈(0,+∞)上单调递增.
即g(k)=4-
6
2k
关于k单调递增,又对任意的k恒成立,∴当k=1时g(k)取得最小值,∴0<c<4-
6
21
=1,即0<c<1.
(2)符号为负.
证明:当q=1时,SnSn+2-
S
2
n+1
=na1•(n+2)a1-[(n+1)a1]2=-
a
2
1
<0,
当q≠1时,∵{an}是由正数组成的数列,∴q>0.
当q>0时且q≠1时,SnSn+2-
S
2
n+1
=
a1(1-qn)
1-q
a1(1-qn+2)
1-q
-[
a1(1-qn+1)
1-q
]2

=
a
2
1
(1-q)2
[(1-qn)(1-qn+2)-(1-qn+12]
=
a
2
1
(1-q)2
(-qn-qn+2+2qn+1)

=-qn
a
2
1
<0.
综上可知:SnSn+2-
S
2
n+1
为负.
(3)假设存在一个正常数m满足题意,则有
Sn-m>0
Sn+1-m>0
Sn+2-m>0
(Sn-m)(Sn+2-m)=(Sn+1-m)2

SnSn+2-
S
2
n+1
=m(Sn+Sn+2-2Sn+1)(*),
∵Sn+Sn+2-2Sn+1=(Sn-m)+(Sn+2-m)-2(Sn+1-m)≥2
(Sn-m)(Sn+2-m)
-2
(Sn+1-m)=0,
∴Sn+Sn+2-2Sn+1≥0,
∴m(Sn+Sn+2-2Sn+1)≥0,
由(1)得SnSn+2-
S
2
n+1
<0.
∴(*)式不成立.
故不存在正常数m使结论成立.
点评:熟练掌握等比数列的前n项和公式、对公比q分类讨论、不等式的性质、基本不等式的性质、对数的运算性质是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}是由正数构成的数列,a1=3,且满足lgan=lgan-1+lgc,其中n是大于1的整数,c是正数.
(1)求数列{an}的通项公式及前n和Sn
(2)求
lim
n→∞
2n-1-an
2n+an+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是由正数组成的等差数列,p,q,r为非零自然数.
证明:(1)若p+q=2r,则
1
a
2
p
+
1
a
2
q
2
a
2
r

(2)
1
a
2
1
+
1
a
2
2
+…+
1
a
2
2n-2
+
1
a
2
2n-1
2n-1
a
2
n
(n>1)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2006•石景山区一模)已知数列{an}是由正整数组成的数列,a1=4,且满足lgan=lgan-1+lgb,其中b>3,n≥2,且n∈N*,则an=
4bn-1
4bn-1
lim
n→∞
3n-1-an
3n-1+an
=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是由正数组成的等差数列,Sn是其前n项的和,并且a3=5,a4S2=28.
(I)求数列{an}的通项公式;
(Ⅱ)证明:不等式(1+
1
a1
)(1+
1
a2
)…(1+
1
an
)•
1
2n+1
2
3
3
对一切n∈N均成立.

查看答案和解析>>

同步练习册答案