精英家教网 > 高中数学 > 题目详情

【题目】已知方程k在(0,+∞)上有两个不同的解αβ(αβ),则下列的四个命题正确的是( )

A. sin 2α=2αcos2α B. cos 2α=2αsin2α

C. sin 2β=-2βsin2β D. cos 2β=-2βsin2β

【答案】C

【解析】依题意y=|cos x|y=kx的图象在(0,+∞)上有两个不同的交点,如图,设直线y=kxy=-cos x的切点B(β,-cos β),与y=cos x的一个交点为A(α,cos α),又y′=(-cos x)′=sin x,依题意y′|x=β=sin β,

∴k=sin β,又-cos β=kβ,∴cos β=-βsin β,∴2sin βcos β=-2βsin2β,

sin 2β=-2βsin2β.C.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=exsinx,其中x∈R,e=2.71828…为自然对数的底数. (Ⅰ)求函数f(x)的单调区间;
(Ⅱ)当 时,f(x)≥kx,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=ax3+bx2+cx的极小值为﹣8,其导函数y=f′(x)的图象经过点 ,如图所示,
(1)求f(x)的解析式;
(2)若对x∈[﹣3,3]都有f(x)≥m2﹣14m恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)=x3+ax2+bx+1的导函数f′(x)满足f′(x)=2a,f′(2)=﹣b,
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)设g(x)=f′(x)ex , 求函数g(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】综合题。
(1)3人坐在有八个座位的一排上,若每人的左右两边都要有空位,则不同坐法的种数为多少?
(2)有5个人并排站成一排,如果甲必须在乙的右边,则不同的排法有多少种?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合A={x|1<x<2},B={x|2a﹣1<x<2a+1}.
(Ⅰ)若AB,求a的取值范围;
(Ⅱ)若A∩B=,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)求函数的单调区间;

2)若上存在一点,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知命题 p: 方程 上有且仅有一解;命题 q :只有一个实数x满足不等式 .若命题“ p 或q ”是假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂产生的废气经过过滤后排放,排放时污染物的含量不得超过1%.已知在过滤过程中废气中的污染物数量P(单位:毫克/升)与过滤时间t(单位:小时)之间的函数关系为:P=P0ekt , (k,P0均为正的常数).若在前5个小时的过滤过程中污染物被排除了90%.那么,至少还需( )时间过滤才可以排放.
A. 小时
B. 小时
C.5小时
D.10小时

查看答案和解析>>

同步练习册答案