【题目】如图,在多面体中,四边形是菱形,⊥平面且.
(1)求证:平面⊥平面;
(2)若设与平面所成夹角为,且,求二面角的余弦值.
【答案】(1)见解析;(2).
【解析】
分析:(1)根据已知可得和,由线面垂直判定定理可证平面,再由面面垂直判定定理证得平面⊥平面.
(2)解法一:向量法,设,以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系,求得的坐标,运用向量的坐标表示和向量的垂直条件,求得平面和平面的的法向量,再由向量的夹角公式,计算即可得到所求的值.
解法二:三垂线法,连接AC交BD于O,连接EO、FO,过点F做FM⊥EC于M,连OM,由已知可以证明FO⊥面AEC,∠FMO即为二面角A-EC-F的平面角,通过菱形的性质、勾股定理和等面积法求得cos∠FMO,得到答案.
解法三:射影面积法,连接AC交BD于O,连接EO、FO,根据已知条件计算,,二面角的余弦值cosθ=,即可求得答案.
详解:(1)证明:连结
四边形是菱形,,
⊥平面,平面,
,
,平面,
平面,
平面,平面⊥平面.
(2)解:解法一:设 ,
四边形是菱形,,
、为等边三角形, ,
是的中点, ,
⊥平面,,
在中有,,,
以为原点,作,以的方向分别为轴,轴的正方向,建空间直角坐标系如图所示,则
所以,,
设平面的法向量为,
由 得 设,解得.
设平面的法向量为,
由 得 设,解得.
设二面角的为,则
结合图可知,二面角的余弦值为.
解法二:
∵EB⊥面ABCD,
∴∠EAB即为EA与平面ABCD所成的角
在Rt△EAB中,cos∠EAB= 又AB=2,∴AE=
∴EB=DF=1
连接AC交BD于O,连接EO、FO
菱形ABCD中,∠BAD=60°,∴BD=AB=2
矩形BEFD中,FO=EO= ,EF=2,EO+FO=EF,∴FO⊥EO
又AC⊥面BEFD, FO面BEFD,∴FO⊥AC,
AC∩EO=O,AC、EO面AEC,∴FO⊥面AEC
又EC面AEC,∴FO⊥EC
过点F做FM⊥EC于M,连OM,
又FO⊥EC, FM∩FO=F, FM、FO面FMO,∴EC⊥面FMO
OM面FMO,∴EC⊥MO
∴∠FMO即为二面角A-EC-F的平面角
AC⊥面BEFD, EO面BEFD,∴AC⊥EO
又O为AC的中点,∴EC=AE=
Rt△OEC中,OC=, EC=,∴OE=,∴OM =
Rt△OFM中,OF=, OM =,∴FM =
∴cos∠FMO=
即二面角A-EC-F的余弦值为
解法三:
连接AC交BD于O,连接EO、FO
菱形ABCD中,∠BAD=60°,∴BD=AB=2
矩形BEFD中,FO=EO= ,EF=2,EO+FO=EF,∴FO⊥EO
又AC⊥面BEFD, FO面BEFD,∴FO⊥AC,
AC∩EO=O,AC、EO面AEC,∴FO⊥面AEC
又∵EB⊥面ABCD,
∴∠EAB即为EA与平面ABCD所成的角
在Rt△EAB中,cos∠EAB= 又AB=2,∴AE=
∴EB=DF=1
在Rt△EBC、Rt△FDC中可得FC=EC=
在△EFC中,FC=EC=,EF=2,∴
在△AEC中, AE=EC=,O为AC中点,∴OE⊥OC
在Rt△OEC,OE=, OC=,∴
设△EFC、△OEC在EC边上的高分别为h、m,
二面角A-EC-F的平面角设为θ,
则cosθ=
即二面角A-EC-F的余弦值为.
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求曲线的普通方程和直线的直角坐标方程;
(2)射线的极坐标方程为,若射线与曲线的交点为,与直线的交点为,求线段的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆E的一个顶点为,焦点在x轴上,若椭圆的右焦点到直线的距离是3.
求椭圆E的方程;
设过点A的直线l与该椭圆交于另一点B,当弦AB的长度最大时,求直线l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是
A. 165 cmB. 175 cmC. 185 cmD. 190cm
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线过点且渐近线为,则下列结论正确的个数为( )
①的实轴长为;②的离心率为;
③曲线经过的一个焦点;④直线与有两个公共点.
A.个B.个C.个D.个
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】双曲线经过点,两条渐近线的夹角为,直线交双曲线于、.
(1)求双曲线的方程;
(2)若过原点,为双曲线上异于、的一点,且直线、的斜率为、,证明:为定值;
(3)若过双曲线的右焦点,是否存在轴上的点,使得直线绕点无论怎样转动,都有成立?若存在,求出的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】图1是由矩形和菱形组成的一个平面图形,其中, ,将其沿折起使得与重合,连结,如图2.
(1)证明图2中的四点共面,且平面平面;
(2)求图2中的四边形的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com