精英家教网 > 高中数学 > 题目详情

若动直线x=a与函数f(x)=sin x和g(x)=cos x的图象分别交于M、N两点,则|MN|的最大值为________.


分析:设x=a与f(x)=sinx的交点为M(a,y1),x=a与g(x)=cosx的交点为N(a,y2),
求出|MN|的表达式,利用三角函数的有界性,求出最大值.
解答:设x=a与f(x)=sinx的交点为M(a,y1),
x=a与g(x)=cosx的交点为N(a,y2),
则|MN|=|y1-y2|=|sina-cosa|
=|sin(a-)|≤
故答案为:
点评:本题考查三角函数的图象与性质,在解决三角函数周期等问题时,我们往往构造函数,利用函数的图象解题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若动直线x=a与函数f(x)=sinx和g(x)=cosx的图象分别交于M,N两点,则|MN|的最大值为(  )
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

若动直线x=a与函数f(x)=sin x和g(x)=cos x的图象分别交于M、N两点,则|MN|的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若动直线x=a与函数f(x)=
3
sin(x+
π
6
)
g(x)=cos(x+
π
6
)
的图象分别交于M、N两点,则|MN|的最大值为(  )
A、
3
B、1
C、2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

若动直线x=a与函数f(x)=sin(x+
π
6
)+sin(x-
π
6
)和g(x)=cosx的图象分别交于M,N两点,则|
MN
|的最大值为
2
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若动直线x=a与函数f(x)=
3
sin(x+
π
12
)
g(x)=cos(x+
π
12
)
的图象分别交于M、N两点,则|MN|的最大值为(  )
A、
3
B、1
C、2
D、3

查看答案和解析>>

同步练习册答案