精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆的右焦点为,离心率为.

(1)求椭圆的方程;

(2)设直线与椭圆相交于 两点, 分别为线段 的中点,若坐标原点在以为直径的圆上,求的值.

【答案】(1);(2).

【解析】试题分析:(1)根据题意右焦点为,离心率为,可得;(2)若坐标原点在以为直径的圆上,则OM⊥ON故,连立方程得出韦达定理,将韦达定理代入得到关于k的方程即可得出k值

解析:(1)由题意得得 a=2,所以 =4,

结合,解得 =3,所以,椭圆的方程为.

(2)由消去得:(3+4k2)x2+8kx-8=0,

设A(x1,y1),B(x2,y2),所以 ,

依题意知,OM⊥ON,且, ,

,

即(x1+1) (x2+1)+(k x1+1)(k x2+1)=0,

整理得: ,

所以,

整理得:4k2+4k+1=0 所以 .

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某服装厂生产一种服装,每件服装成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,规定当一次订购量超过100件时,每多订购一件,订购的全部服装的出厂单价就降低元,根据市场调查,销售商一次订购不会超过600.

1设一次订购件,服装的实际出厂单价为元,写出函数的表达式;

2当销售商一次订购多少件服装时,该厂获得的利润最大?其最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,正三棱柱的高为2,的中点,的中点

(1)证明:平面

(2)若三棱锥的体积为,求该正三棱柱的底面边长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知定义域为R的函数f(x)在(2,+∞)上单调递减,且y=f(x+2)为偶函数,则关于x的不等式f(2x﹣1)﹣f(x+1)>0的解集为(
A.(﹣∞,﹣ )∪(2,+∞)
B.(﹣ ,2)
C.(﹣∞, )∪(2,+∞)
D.( ,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,焦点在x轴上,左、右焦点分别为F1F2,且|F1F2|=2,点1 在椭圆C

1求椭圆C的方程;

2F1的直线l与椭圆C相交于AB两点,且△AF2B的面积为,求以F2为圆心且与直线l相切的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若对任意,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆的圆心在坐标原点,且与直线相切.

1)求直线被圆所截得的弦的长;

2)过点作两条与圆相切的直线,切点分别为求直线的方程;

3)若与直线垂直的直线与圆交于不同的两点,若为钝角,求直线轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若bm为数列{2n}中不超过Am3(m∈N*)的项数,2b2=b1+b5且b3=10,则正整数A的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg), 其频率分布直方图如下:

(1)记A表示事件“旧养殖法的箱产量低于50 kg”,估计A的概率;

(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:

箱产量<50 kg

箱产量≥50 kg

旧养殖法

新养殖法

(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比较.

附:

P

0.050 0.010 0.001

k

3.841 6.635 10.828

.

查看答案和解析>>

同步练习册答案