精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=lg(ax-bx),(a,b为常数,a>1>b>0),若x∈(2,+∞)时,f(x)>0恒成立,则(  )
A.a2-b2>1B.a2-b2≥1C.a2-b2<1D.a2-b2≤1

分析 利用复合函数的单调性可知,f(x)=lg(ax-bx)为定义域上的增函数,依题意可得a2-b2≥1,从而得到答案.

解答 解:∵a>1>b>0,
∴y=ax为R上的增函数,y=-bx为R上的增函数,
∴y=ax-bx为R上的增函数,又y=lgx为(0,+∞)上的增函数,
由复合函数的单调性知,f(x)=lg(ax-bx)为定义域上的增函数,
又x∈(2,+∞)时,f(x)>0恒成立,
∴a2-b2≥1,
故选:B.

点评 本题考查函数恒成立问题,考查复合函数的单调性,当x=2时,f(x)可以为0是易漏之处,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.在数列{an}中,an+1=an+a(n∈N*,a为常数),若平面上的三个不共线的非零向量$\overrightarrow{OA}$,$\overrightarrow{OB}$,$\overrightarrow{OC}$满足$\overrightarrow{OC}$=a1$\overrightarrow{OA}$+a2014$\overrightarrow{OB}$,A,B,C三点共线且该直线不过O点,则S2014等于(  )
A.1007B.1006C.2010D.2012

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设x,y满足约束条件$\left\{{\begin{array}{l}{x,y≥0}\\{x-y≥-1}\\{x+y≤3}\end{array}}\right.$,则z=x-2y的取值范围为(  )
A.(-3,3)B.[-3,3]C.[-3,3)D.[-2,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设函数$f(x)=ln(x+1)-\frac{ax}{x+1}(a∈R)$.
(Ⅰ)若f(0)为f(x)的极小值,求a的值;
(Ⅱ)若f(x)>0对x∈(0,+∞)恒成立,求a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知抛物线L的顶点在原点,对称轴为x轴,圆M:x2+y2-2x-4y=0的圆心M和A(x1,y1)、B(x2,y2)两点均在L上,若MA与MB的斜率存在且倾斜角互补,则直线AB的斜率是(  )
A.-1B.1C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将函数f(x)=sinωx(ω>0)的图象向右平移$\frac{π}{4}$个单位后得到函数g(x)的图象,若对于满足|f(x1)-g(x2)|=2的x1,x2,有|x1-x2|min=$\frac{π}{4}$,则f($\frac{π}{4}$)的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)是偶函数,且f(x-2)在[0,2]上是减函数,则(  )
A.f(0)<f(-1)<f(2)B.f(-1)<f(0)<f(2)C.f(-1)<f(2)<f(0)D.f(2)<f(0)<f(-1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某企业生产A、B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)

(1)分别将A、B两种产品的利润表示为投资的函数,并写出它们的函数关系式;
(2)该企业已筹集到10万元资金,并全部投入A、B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.点(-1,1)到直线x+y-2=0的距离为$\sqrt{2}$.

查看答案和解析>>

同步练习册答案