精英家教网 > 高中数学 > 题目详情

【题目】如图所示,在矩形ABCD中,沿对角线将折起,使点C移到 点,且C点在平面ABD的射影O恰在AB上.

(1)求证:平面ACD

求直线AB与平面D所成角的正弦值.

【答案】(1)详见解析;(2).

【解析】

(1)由已知条件推导出DA⊥BC,BC⊥DC,由此能证明BC⊥平面ACD.

(2)作AM⊥DCM,由已知条件推导出∠ABMAB与平面BCD所成的角,由此能求出直线AB与平面BCD所成角的正弦值.

证明:在矩形ABCD中,

平面ABDABBC在平面ABD内的射影,

平面ACD

解:作M,连接BM

平面ADC

平面SDC平面平面BDC

平面平面BDC

所以平面BCD

所以AB与平面BCD所成的角,

中,

中,

直线AB与平面BCD所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,四边形是菱形,,且交于点上任意一点.

(1)求证:

(2)若的中点,且二面角的余弦值为,求与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】泰兴机械厂生产一种木材旋切机械,已知生产总利润c元与生产量x台之间的关系式为c(x)=-2x2+7 000x+600.

(1)求产量为1 000台的总利润与平均利润;

(2)求产量由1 000台提高到1 500台时,总利润的平均改变量;

(3)c′(1 000)c′(1 500),并说明它们的实际意义.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-5:不等式选讲
已知不等式|x+3|﹣2x﹣1<0的解集为(x0 , +∞)
(Ⅰ)求x0的值;
(Ⅱ)若函数f(x)=|x﹣m|+|x+ |﹣x0(m>0)有零点,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】德国著名数学家狄利克雷在数学领域成就显著,以其名命名的函数f(x)= ,称为狄利克雷函数,则关于函数f(x)有以下四个命题: ①f(f(x))=1;
②函数f(x)是偶函数;
③任意一个非零有理数T,f(x+T)=f(x)对任意x∈R恒成立;
④存在三个点A(x1 , f(x1)),B(x2 , f(x2)),C(x3 , f(x3)),使得△ABC为等边三角形.
其中真命题的个数是(
A.4
B.3
C.2
D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知中心在原点,焦点在轴上,离心率为的椭圆过点

(1)求椭圆的方程;

(2)设椭圆与轴的非负半轴交于点,过点作互相垂直的两条直线,分别交椭圆于两点,连接,求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为响应国家“精准扶贫,产业扶贫”的战略,某市面向全市征召《扶贫政策》义务宣传志愿者,从年龄在[20,45]的500名志愿者中随机抽取100名,其年龄频率分布直方图如图所示.
(1)求图中x的值,并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;
(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取10名参加中心广场的宣传活动,再从这10名志愿者中选取3名担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆M过C(1,-1),D(-1,1)两点,且圆心M在x+y-2=0上.

(1)求圆M的方程;

(2)设点P是直线3x+4y+8=0上的动点,PA,PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下茎叶图记录了甲、乙两组各四名同学的植树棵数。乙组记录中有一个数据模糊,无法确认,在图中经X表示。

1)如果X=8,求乙组同学植树棵数的平均数和方差

2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率

查看答案和解析>>

同步练习册答案