精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 的左右焦点分别为,离心率为.若点为椭圆上一动点,的内切圆面积的最大值为.

(1)求椭圆的标准方程;

(2)过点作斜率为的动直线交椭圆于两点,的中点为,在轴上是否存在定点,使得对于任意值均有,若存在,求出点的坐标,若不存在,说明理由.

【答案】(1);(2)见解析

【解析】

(1)首先根据椭圆的离心率,可得内切圆半径为,从而得到三角形的面积又因为根据当为椭圆的上、下顶点时,的面积最大,求得,从而得到椭圆的方程;

(2)设出直线的方程与椭圆方程联立,利用韦达定理,得到两根和与两根积,已知可得 ,利用向量数量积坐标公式,对任意的k值此方程无解,所以不存在点N使得结论成立.

(1)由,得

内切圆半径为,则

为椭圆的上、下顶点时,的面积最大

,又,解得

所以所求椭圆的方程为

(2)设动直线方程为,点的坐标为

联立,得

,则

由已知可得 ,则

=0

∵对任意的k值此方程无解

∴不存在点N使得结论成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为 ;在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C的极坐标方程为

(1)a=1,求Cl交点的直角坐标;

(2)C上的点到l的距离的最大值为,求a.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在直角梯形中,为线段的中点.将沿折起,使平面平面,得到几何体,如图2所示.

(1)求证:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,解不等式

(2)若存在实数,使得不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某厂今年拟举行促销活动,经调查测算,该厂产品的年销售量(即该厂的年产量)x(万件)与年促销费m(万元)(m≥0)满足x=3-.已知今年生产的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).

(1)将今年该产品的利润y万元表示为年促销费m(万元)的函数;

(2)求今年该产品利润的最大值,此时促销费为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解甲、乙两班的数学学习情况,从两班各抽出10名学生进行数学水平测试,成绩如下(单位:分):

甲班:82 84 85 89 79 80 91 89 79 74

乙班:90 76 86 81 84 87 86 82 85 83

(1)求两个样本的平均数;

(2)求两个样本的方差和标准差;

(3)试分析比较两个班的学习情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,,求的值;

(2)若,求函数的单调递增区间;

(3)若对任意的恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性;

(II)证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,对称轴为,且.

(1)求的值;

(2)求函数上的最值.

(3)若函数,且方程有三个解,求的取值范围.

查看答案和解析>>

同步练习册答案