精英家教网 > 高中数学 > 题目详情

已知数列是公差不为0的等差数列,,且成等比数列.
(1)求数列{an}的通项公式;
(2)设,求数列的前项和

(1);(2)

解析试题分析:(1)根据等比中项的性质列出关于公差的方程即可,注意公差的范围;(2)根据通项公式的形式采用裂项求和法即可.
试题解析:(1)设数列的公差为,由成等比数列,得
,            解得,或
时,,与成等比数列矛盾,舍去.
即数列的通项公式
(2)=
.
考点:(1)等差数列与等比数列;(2)裂项求和法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知公比不为的等比数列的首项,前项和为,且成等差数列.
(1)求等比数列的通项公式;
(2)对,在之间插入个数,使这个数成等差数列,记插入的这个数的和为,求数列的前项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设等比数列{an}的前n项和为Sn.已知an+1=2Sn+2()
(1)求数列{an}的通项公式;
(2)在an与an+1之间插入n个数,使这n+2个数组成一个公差为dn的等差数列,
①在数列{dn}中是否存在三项dm,dk,dp(其中m,k,p成等差数列)成等比数列?若存在,求出这样的三项,若不存在,说明理由;
②求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是公差不等于0的等差数列,是等比数列,且.
(1)若,比较的大小关系;
(2)若.(ⅰ)判断是否为数列中的某一项,并请说明理由;
(ⅱ)若是数列中的某一项,写出正整数的集合(不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列是等差数列,且.
(1)求数列的通项公式;
(2)令,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知各项均不相等的等差数列的前四项和成等比.
(1)求数列的通项公式;
(2)设,若恒成立,求实数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,若成等比数列,且时,
(1)求证:当时,成等差数列;
(2)求的前n项和

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知为公差不为零的等差数列,首项的部分项、 、恰为等比数列,且.
(1)求数列的通项公式(用表示);
(2)设数列的前项和为, 求证:是正整数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知等差数列{an}的前5项和为105,且a10=2a5.
(1)求数列{an}的通项公式;
(2)对任意m∈N*,将数列{an}中不大于72m的项的个数记为bm,求数列{bm}的前m项和Sm.

查看答案和解析>>

同步练习册答案