【题目】已知圆,直线与圆相交于不同的两点,点是线段的中点。
(1)求直线的方程;
(2)是否存在与直线平行的直线,使得与与圆相交于不同的两点,不经过点,且的面积最大?若存在,求出的方程及对应的的面积S;若不存在,请说明理由。
科目:高中数学 来源: 题型:
【题目】2020年春节突如其来的新型冠状病毒肺炎在湖北爆发,为了打赢疫情防控阻击战,我们执行了延长假期政策,在延长假期面前,我们“停课不停学”,河南省教育厅组织部分优秀学校的优秀教师录播《名师同步课堂》,我校高一年级要在甲、乙、丙、丁、戊5位数学教师中随机抽取3人参加录播课堂,则甲、乙两位教师同时被选中的概率为( ).
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了研究黏虫孵化的平均温度(单位: )与孵化天数之间的关系,某课外兴趣小组通过试验得到如下6组数据:
组号 | 1 | 2 | 3 | 4 | 5 | 6 |
平均温度 | 15.3 | 16.8 | 17.4 | 18 | 19.5 | 21 |
孵化天数 | 16.7 | 14.8 | 13.9 | 13.5 | 8.4 | 6.2 |
他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:
经计算得,
(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)
(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到0.1)
,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,,若函数有三个不同的零点,,(其中),则的取值范围为__________.
【答案】
【解析】如图:
,,作出函数图象如图所示
,,作出函数图象如图所示
,由有三个不同的零点
,如图
令
得
为满足有三个零点,如图可得
,
点睛:本题考查了函数零点问题,先由导数求出两个函数的单调性,继而画出函数图像,再由函数的零点个数确定参量取值范围,将问题转化为函数的两根问题来求解,本题需要化归转化,函数的思想,零点问题等较为综合,有很大难度。
【题型】填空题
【结束】
17
【题目】已知等比数列的前项和为,且满足.
(1)求数列的通项公式;
(2)若数列满足,求数列的前项和.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数, ,在处的切线方程为.
(1)求, ;
(2)若,证明: .
【答案】(1), ;(2)见解析
【解析】试题分析:(1)求出函数的导数,得到关于 的方程组,解出即可;
(2)由(1)可知, ,
由,可得,令, 利用导数研究其单调性可得
,
从而证明.
试题解析:((1)由题意,所以,
又,所以,
若,则,与矛盾,故, .
(2)由(1)可知, ,
由,可得,
令,
,
令
当时, , 单调递减,且;
当时, , 单调递增;且,
所以在上当单调递减,在上单调递增,且,
故,
故.
【点睛】本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.
【题型】解答题
【结束】
22
【题目】在平面直角坐标系中,曲线的参数方程为(, 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;
(1)求曲线的极坐标方程;
(2)在曲线上取两点, 与原点构成,且满足,求面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为,设∠AOE=,探照灯O照射在长方形ABCD内部区域的面积为S.
(1)当0≤时,写出S关于的函数表达式;
(2)若探照灯每9分钟旋转“一个来回”(OE自OA转到OC,再回到OA,称“一个来回”,忽略OE在OA及OC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG,求点G在“一个来回”中,被照到的时间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则等于 ( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com