精英家教网 > 高中数学 > 题目详情

【题目】已知圆,直线与圆相交于不同的两点,点是线段的中点。

(1)求直线的方程;

(2)是否存在与直线平行的直线,使得与与圆相交于不同的两点不经过点,且的面积最大?若存在,求出的方程及对应的的面积S;若不存在,请说明理由。

【答案】(1);(2)见解析.

【解析】

(1)先由圆的方程得到圆心坐标,根据点是线段的中点,即可求出斜率,进而可得直线方程;

(2)先设直线方程为:,根据点到直线的距离得到:的距离

进而可表示出的面积,结合基本不等式即可得出结果.

(1)圆C:可化为,则

是弦的中点,所以,所以斜率为

方程为:

(2)设直线方程为:,即

的距离,所以

所以的面积

当且仅当,即的面积最大,最大面积为2,

此时,

的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】2020年春节突如其来的新型冠状病毒肺炎在湖北爆发,为了打赢疫情防控阻击战,我们执行了延长假期政策,在延长假期面前,我们停课不停学,河南省教育厅组织部分优秀学校的优秀教师录播《名师同步课堂》,我校高一年级要在甲、乙、丙、丁、戊5位数学教师中随机抽取3人参加录播课堂,则甲、乙两位教师同时被选中的概率为( ).

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC在内角ABC的对边分别为abc,已知a=bcosC+csinB.

)求B

)若b=2,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了研究黏虫孵化的平均温度(单位: )与孵化天数之间的关系,某课外兴趣小组通过试验得到如下6组数据:

组号

1

2

3

4

5

6

平均温度

15.3

16.8

17.4

18

19.5

21

孵化天数

16.7

14.8

13.9

13.5

8.4

6.2

他们分别用两种模型①,②分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图:

经计算得

(1)根据残差图,比较模型①,②的拟合效果,应选择哪个模型?(给出判断即可,不必说明理由)

(2)残差绝对值大于1的数据被认为是异常数据,需要剔除,剔除后应用最小二乘法建立关于的线性回归方程.(精确到0.1)

,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,若函数有三个不同的零点(其中),则的取值范围为__________

【答案】

【解析】如图:

,作出函数图象如图所示

,作出函数图象如图所示

,由有三个不同的零点

,如图

为满足有三个零点,如图可得

点睛:本题考查了函数零点问题,先由导数求出两个函数的单调性,继而画出函数图像,再由函数的零点个数确定参量取值范围,将问题转化为函数的两根问题来求解,本题需要化归转化,函数的思想,零点问题等较为综合,有很大难度。

型】填空
束】
17

【题目】已知等比数列的前项和为,且满足.

(1)求数列的通项公式;

(2)若数列满足,求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

【答案】(1) ;(2)见解析

【解析】试题分析:1)求出函数的导数,得到关于 的方程组,解出即可;

(2)由(1)可知

,可得,令, 利用导数研究其单调性可得

从而证明.

试题解析:((1)由题意,所以

,所以

,则,与矛盾,故 .

(2)由(1)可知

,可得

时, 单调递减,且

时, 单调递增;且

所以上当单调递减,在上单调递增,且

.

【点睛本题考查利用函数的切线求参数的方法,以及利用导数证明不等式的方法,解题时要认真审题,注意导数性质的合理运用.

型】解答
束】
22

【题目】在平面直角坐标系中,曲线的参数方程为 为参数),以坐标原点为极点, 轴正半轴为极轴建立极坐标系,直线的极坐标方程为,若直线与曲线相切;

(1)求曲线的极坐标方程;

(2)在曲线上取两点 与原点构成,且满足,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图一块长方形区域ABCD,AD=2(km),AB=1(km).在边AD的中点O处,有一个可转动的探照灯,其照射角∠EOF始终为,设∠AOE=,探照灯O照射在长方形ABCD内部区域的面积为S.

(1)当0时,写出S关于的函数表达式;

(2)若探照灯每9分钟旋转“一个来回”(OEOA转到OC,再回到OA,称“一个来回”,忽略OEOAOC反向旋转时所用时间),且转动的角速度大小一定,设AB边上有一点G,且∠AOG,求点G在“一个来回”中,被照到的时间.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱台中, 底面,平面平面的中点.

(1)证明:

(2)若,且,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,位于A处的信息中心获悉:在其正东方向相距40海里的B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东的方向即沿直线CB前往B处救援,则等于 ( )

A. B. C. D.

查看答案和解析>>

同步练习册答案