精英家教网 > 高中数学 > 题目详情
如图,在平面直角坐标系xOy中,圆x2+y2=r2(r>0)内切于正方形ABCD,任取圆上一点P,若=a•+b•(a、b∈R),则a、b满足的一个等式是   
【答案】分析:将向量用坐标表示,得出坐标之间的关系,再利用x2+y2=r2,即可求得结论.
解答:解:设P(x,y),则
由题意,=(r,r),=(-r,r),
=a•+b•(a、b∈R),
∴(x,y)=(ar,ar)+(-br,br)
∴x=ar-br,y=ar+br
∴x2+y2=2a2r2+2b2r2
∵x2+y2=r2
∴r2=2a2r2+2b2r2
∴a2+b2=
故答案为:a2+b2=
点评:本题考查向量知识的运用,解题的关键是将向量用坐标表示,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案