精英家教网 > 高中数学 > 题目详情
1.已知函数$f(x)=x+\frac{m}{x}$,且此函数图象过点(1,5),则实数m的值为4.

分析 直接将图象所过的点(1,5)代入函数式即可求得m=4.

解答 解:因为函数$f(x)=x+\frac{m}{x}$的图象过点(1,5),
所以f(1)=5,即1+m=5,
解得m=4,f(x)=x+$\frac{4}{x}$,
故填:4.

点评 本题主要考查了函数的图象与性质,直接将图象所过的点代入函数式即可解决问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=ex,x∈R.
(1)若直线y=kx与f(x)的反函数的图象相切,求实数k的值;
(2)若m<0,讨论函数g(x)=f(x)+mx2零点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.为了检测某种产品的质量,抽取了一个容量为100的样本,数据的分组数如下:
[10.75,10.85)3;[10.85,10.95)9;[10.95,11.05)13;
[11.05,11.15)16;[11.15,11.25)26;[11.25,11.35)20;
[11.35,11.45)7;[11.45,11.55)4;[11.55,11.65)2;
估计数据落在[10.95,11.35)范围内的频率为(  )
A..035B.0.5C.0.75D.0.95

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设正实数x,y,z满足x2-3xy+4y2-z=0,则$\frac{z}{xy}$的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.设数列{an}的前n项和为Sn,且满足Sn=2an-1(n∈N*).
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列$\left\{{\frac{2n-1}{a_n}}\right\}$的前n项和Tn
(Ⅲ)数列{bn}满足bn+1=an+bn(n∈N*),且b1=3.若不等式${log_2}({b_n}-2)<\frac{3}{16}{n^2}+t$对任意n∈N*恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.角β的终边和角α=-1035°的终边相同,则cosβ=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知$f(x)=\frac{2}{{{3^x}+1}}+m$,m是实常数,
(1)当m=1时,写出函数f(x)的值域;
(2)当m=0时,判断函数f(x)的奇偶性,并给出证明;
(3)若f(x)是奇函数,不等式f(f(x))+f(a)<0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆$\frac{x^2}{36}+\frac{y^2}{9}=1$,弦AB的中点是M(3,1).
(1)求过点M且垂直于长轴的弦长;
(2)求弦AB所在直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图是一个程序框图,则输出的S的值是(  )
A.14B.15C.31D.41

查看答案和解析>>

同步练习册答案