精英家教网 > 高中数学 > 题目详情

【题目】设椭圆M: =1(a>b>0)的离心率为 ,点A(a,0),B(0,﹣b),原点O到直线AB的距离为
(Ⅰ)求椭圆M的方程;
(Ⅱ)设直线l:y=2x+m与椭圆M相交于C、D不同两点,经过线段CD上点E的直线与y轴相交于点P,且有 =0,| |=| |,试求△PCD面积S的最大值.

【答案】解:(Ⅰ)由 得a=
可得直线AB的方程为 ,于是
得b= ,b2=2,a2=4,所以椭圆M的方程为
(Ⅱ)设C(x1 , y1),D(x2 , y2),由方程组
得9x2+8mx+2m2﹣4=0,
所以有 ,且△≥0,即m2≤18.

=
=
=
=
因为 =0,
所以
又| |=| |,
所以E是线段CD的中点,
点E的坐标为 ,即E的坐标是
因此直线PE的方程为y=﹣ ,得点P的坐标为(0,﹣ ),
所以|PE|=
= .(2分)
因此
=
所以当m2=9,即m=±3时,S取得最大值,最大值为
【解析】(Ⅰ)由 得a= .可得直线AB的方程为 ,于是 ,由此能够求出椭圆M的方程.(Ⅱ)设C(x1 , y1),D(x2 , y2),由方程组 ,得9x2+8mx+2m2﹣4=0,所以有 ,且△≥0,即m2≤18. = .由 ,E是线段CD的中点,由此能求出S的最大值.
【考点精析】根据题目的已知条件,利用椭圆的标准方程的相关知识可以得到问题的答案,需要掌握椭圆标准方程焦点在x轴:,焦点在y轴:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知三棱锥的底面是直角三角形,直角边长分别为3和4,过直角顶点的侧棱长为4,且垂直于底面,该三棱锥的正视图是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,B1 C和C1D与底面A1B1C1D1所成的角分别为60°和45°,则异面直线B1C和C1D所成角的余弦值为(

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,且离心率为.

(1)求椭圆的方程;

(2)设点轴上的射影为点,过点的直线与椭圆相交于 两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数为自然对数的底数),.

(1)若的极值点,且直线分别与函数的图象交于,求两点间的最短距离;

(2)若时,函数的图象恒在的图象上方,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动点到定点的距离之和为.

(1)求动点轨迹的方程;

(2)设,过点作直线,交椭圆于不同于两点,直线 的斜率分别为 ,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种零件按质量标准分为1,2,3,4,5五个等级,现从一批该零件巾随机抽取20个,对其等级进行统计分析,得到频率分布表如下

等级

1

2

3

4

5

频率

0.05

m

0.15

0.35

n


(1)在抽取的20个零件中,等级为5的恰有2个,求m,n;
(2)在(1)的条件下,从等级为3和5的所有零件中,任意抽取2个,求抽取的2个零件等级恰好相同的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=
(1)若a=﹣1,求f(x)的单调区间;
(2)若f(x)有最大值3,求a的值.
(3)若f(x)的值域是(0,+∞),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,梯形ABEF中,AF∥BE,AB⊥AF,且AB=BC=AD=DF=2CE=2,沿DC将梯形DCFE折起,使得平面DCFE⊥平面ABCD.
(1)证明:AC∥平面BEF;
(2)求三棱锥D﹣BEF的体积;
(3)求直线AF与平面BDF所求的角.

查看答案和解析>>

同步练习册答案