精英家教网 > 高中数学 > 题目详情

【题目】已知函数,若对任意的,都有,则实数的取值范围是( )

A. B. C. D.

【答案】D

【解析】

x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)变形得[f(x1)﹣f(x2)(x1﹣x2)≥0,进而分析函数f(x)为增函数或常数函数,据此可得答案.

根据题意,将x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1)变形可得[f(x1)﹣f(x2)]

(x1﹣x2)≥0,所以函数f(x)为增函数或常数函数.

f(x)为增函数时,则f(x)=x-3kx-x

所以3k ,h(x)=

h(x)=>0, h(x)为增函数,

x , h(x) 1 3k , k .

因为f(x)不可能为常数函数,(舍所以k .

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,对称轴为直线的抛物线经过点.

1)求抛物线解析式及顶点坐标;

2)设点是抛物线上一动点,且位于第四象限,四边形OEAF是以OA为对角线的平行四边形,求四边形OEAF的面积Sx之间的函数关系式,并写出自变量x的取值范围;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为调查某社区居民的业余生活状况,研究这一社区居民在2000-2200时间段的休闲方式与性别的关系,随机调查了该社区80人,得到下面的数据表:

休闲方式

性别

看电视

看书

合计

10

50

60

10

10

20

合计

20

60

80

1)根据以上数据,能否有的把握认为2000-2200时间段的休闲方式与性别有关系

2)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量,求的数学期望和方差.

参考公式与数据对应对应.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】江苏省园博会有一中心广场,南京园,常州园都在中心广场的南偏西45°方向上,到中心广场的距离分别为kmkm扬州园在中心广场的正东方向,到中心广场的距离为km规划建设一条笔直的柏油路穿过中心广场,且将南京园,常州园,扬州园到柏油路的最短路径铺设成鹅卵石路如图(1)、(2)).已知铺设每段鹅卵石路的费用(万元)与其长度的平方成正比,比例系数为2.设柏油路与正东方向的夹角,即图(2)中∠COF(0,)),铺设三段鹅卵石路的总费用为y万元).

(1)求南京园到柏油路的最短距离关于的表达式

(2)y的最小值及此时tan的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在底面是菱形的四棱锥中,,点上,且.

1)点在棱上且平面,求线段的长度;

2)在(1)的条件下,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知常数,函数.

(1)讨论在区间上的单调性;

(2)存在两个极值点,,的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)当时,求函数的极值.

(2)若函数在区间上有唯一的零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知圆及点

(1)若直线平行于,与圆相交于两点,,求直线的方程;

(2)在圆上是否存在点,使得?若存在,求点的个数;若不存在,说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知扇形的圆心角∠AOB,半径为,若点C上的一动点(不与点AB重合).

(1)若弦,求的长;

(2)求四边形OACB面积的最大值.

查看答案和解析>>

同步练习册答案