【题目】设a,b,c是△ABC的三边,P: , Q:方程x2 +2ax+b2 = 0与方程x2 +2cx-b2 = 0有公共根. 则P是Q的_____.(填:充分不必要条件,必要而不充分条件,充要条件,既不充分也不必要条件)
【答案】充要条件
【解析】
要从充分性和必要性两个方面进行分析,充分性,即假设A=90°成立判断两个方程是否有公共根,必要性,设两个方程公共根为m,判断A=90°是否成立,分析两个方面即可得结论.
充分性:当A=90°时,a2=b2+c2.
于是x2+2ax+b2=0x2+2ax+a2﹣c2=0[x+(a+c)][x+(a﹣c)]=0,
该方程有两根x1=﹣(a+c),x2=﹣(a﹣c).
同样,x2+2cx﹣b2=0[x+(c+a)][x+(c﹣a)]=0,
该方程亦有两根x3=﹣(c+a),x4=﹣(c﹣a).
显然x1=x3,两方程有公共根,即充分性成立;
必要性:设方程x2+2ax+b2=0与x2+2cx﹣b2=0的公共根为m,
则
(1)+(2)得m=﹣(a+c).(m=0舍去).
将m=﹣(a+c)代入(1)式,得[﹣(a+c)]2+2a[﹣(a+c)]+b2=0,
整理得a2=b2+c2.所以A=90°,即必要性成立;
故答案为:充要条件.
科目:高中数学 来源: 题型:
【题目】根据某水文观测点的历史统计数据,得到某河流水位X(单位:米)的频率分布直方图如图:将河流水位在以上6段的频率作为相应段的概率,并假设每年河流水位互不影响.
(1)求未来三年,至多有1年河流水位X∈[27,31)的概率(结果用分数表示);
(2)该河流对沿河A企业影响如下:当X∈[23,27)时,不会造成影响;当X∈[27,31)时,损失10000元;当X∈[31,35)时,损失60000元,为减少损失,现有种应对方案: 方案一:防御35米的最高水位,需要工程费用3800元;
方案二:防御不超过31米的水位,需要工程费用2000元;
方案三:不采取措施;
试比较哪种方案较好,并请说理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}的前n项和Sn=﹣ n2+kn(其中k∈N+),且Sn的最大值为8.
(1)确定常数k,求an;
(2)求数列 的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知x>0,y>0,x+y+xy=8,则x+y的最小值?
(2)已知不等式的解集为{x|a≤x<b},点(a,b)在直线mx+ny+1=0上,其中m,n>0,若对任意满足条件的m,n,恒有成立,则λ的取值范围?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校从参加高一年级期末考试的学生中抽出40名学生,将其成绩分成六段[40,50),[50,60)…[90,100]后画出如下部分频率分布直方图,观察图形的信息,回答下列问题:
(1)求第四小组的频率;
(2)估计这次考试的平均分和中位数(精确到0.01);
(3)从成绩是40~50分及90~100分的学生中选两人,记他们的成绩分别为,求满足“”的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】
A.16
B.18
C.25
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知p:方程表示双曲线,q:表示焦点在x轴上的椭圆.
(1)若“p且q”是真命题,求实数m的取值范围;
(2)若“p且q”是假命题,“p或q”是真命题,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com