【题目】已知函数.
(1)解不等式;
(2)设函数的最小值为c,实数a,b满足,求证:.
科目:高中数学 来源: 题型:
【题目】已知四棱锥中,底面为矩形,且,,若平面,,分别是线段,的中点.
(1)证明:;
(2)在线段上是否存在点,使得平面?若存在,确定点的位置:若不存在,说明理由;
(3)若与平面所成的角为45°,求二面角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知双曲线的右顶点到其一条渐近线的距离等于,抛物线的焦点与双曲线的右焦点重合,则抛物线上的动点到直线和的距离之和的最小值为__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,已知圆C1:(x+3)2+(y-1)2=4和圆C2:(x-4)2+(y-5)2=4.
(1)若直线l过点A(4,0),且被圆C1截得的弦长为2,求直线l的方程;
(2)设P为平面上的点,满足:存在过点P的无穷多对互相垂直的直线l1和l2,它们分别与圆C1和圆C2相交,且直线l1被圆C1截得的弦长与直线l2被圆C2截得的弦长相等,试求所有满足条件的点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数,(其中,,),在上既无最大值,也无最小值,且,则下列结论成立的是( )
A.若对任意,则
B.的图象关于点中心对称
C.函数的单调减区间为
D.函数的图象相邻两条对称轴之间的距离是
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,四边形EFGH为空间四边形ABCD的一个截面,若截面为平行四边形.
(1)求证:AB∥平面EFGH
(2)若AB=4,CD=6,求四边形EFGH周长的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com