精英家教网 > 高中数学 > 题目详情
11.正三棱台的高为3,上、下底面边长分别为2和4,求这个棱台的侧棱长和斜高.

分析 画出图形,分别求出三棱台上下底面的中心到顶点和到对边的距离,再利用勾股定理求出棱台的侧棱长与斜高.

解答 解:如图所示,
正三棱台ABC-A1B1C1中,高OO1=3,底面边长为A1B1=2,AB=4,
∴OA=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$AB=$\frac{4}{3}$$\sqrt{3}$,
O1A1=$\frac{2}{3}$×$\frac{\sqrt{3}}{2}$A1B1=$\frac{2}{3}$$\sqrt{3}$,
∴棱台的侧棱长为
AA1=$\sqrt{{3}^{2}{+(\frac{4}{3}\sqrt{3}-\frac{2}{3}\sqrt{3})}^{2}}$=$\frac{\sqrt{93}}{3}$;
又OE=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$AB=$\frac{2}{3}$$\sqrt{3}$,
O1E1=$\frac{1}{3}$×$\frac{\sqrt{3}}{2}$A1B1=$\frac{1}{3}$$\sqrt{3}$,
∴该棱台的斜高为
EE1=$\sqrt{{3}^{2}{+(\frac{2}{3}\sqrt{3}-\frac{1}{3}\sqrt{3})}^{2}}$=$\frac{2}{3}$$\sqrt{21}$.

点评 本题考查了求正三棱台的侧棱长与斜高的应用问题,也考查了计算能力的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.求值:sin(-1740°).cos1470°+cos(-660°)sin750°+tan405°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.若log3x•log43=(log34+log43)2-($\frac{lo{{g}_{4}}^{3}}{lo{{g}_{3}}^{4}}$+$\frac{lo{{g}_{3}}^{4}}{lo{{g}_{4}}^{3}}$),求x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.f(z)=z+i,且z1=1+5i,z2=-3+3i,则f(z1-z2)的值为(  )
A.-2+3iB.-2-3iC.4-3iD.4+3i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列命题中,不适合使用使用数学归纳法证明的是(  )
A.{an}是以q(q≠1)为公比的等比数列,则a1+a2+…+an=$\frac{{a}_{1}(1-{q}^{n})}{1-q}$
B.若n∈N*,则cos$\frac{α}{2}$•cos$\frac{α}{{2}^{2}}$•cos$\frac{α}{{2}^{3}}$…cos$\frac{α}{{2}^{n}}$=$\frac{sinα}{{2}^{n}sin\frac{α}{{2}^{n}}}$
C.若n∈N*,则n2+3n+1是质数
D.(n2-1)+22(n2-22)+…+n2(n2-n2)=$\frac{{n}^{2}(n-1)(n+1)}{4}$对任何n∈N*都成立

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i为虚数单位,复数$\frac{1-i}{2i+1}$的共扼复数在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.1,1,2,3,5,8,13,这一列数的规律是:第1、第2个数是1,从第3个数起,该数是其前面2个数之和,试用循环语旬描述,计算这列数中前20个数之和的算法.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,AB=2,AC=3,$\overrightarrow{BD}$=$\frac{1}{2}$$\overrightarrow{BC}$,则$\overrightarrow{AD}$•$\overrightarrow{BD}$=(  )
A.-$\frac{5}{2}$B.$\frac{5}{2}$C.-$\frac{5}{4}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知等比数列{an}中,a2=$\frac{1}{3}$,公比q=$\frac{1}{3}$,Sn为{an}的前n项和.
(1)求an和Sn
(2)设bn=log3a1+log3a2+…+log3an,求数列bn的通项公式.

查看答案和解析>>

同步练习册答案