【题目】(1)若二项式的展开式中存在常数项,则的最小值为______;
(2)从6名志愿者中选出4人,分别参加两项公益活动,每项活动至少1人,则不同安排方案的种数为____.(用数字作答)
科目:高中数学 来源: 题型:
【题目】已知椭圆的左焦点为,是椭圆上关于原点对称的两个动点,当点的坐标为时,的周长恰为.
(1)求椭圆的方程;
(2)过点作直线交椭圆于两点,且 ,求面积的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】古希腊数学家阿波罗尼斯在他的著作《圆锥曲线论》中记载了用平面切割圆锥得到圆锥曲线的方法.如图,将两个完全相同的圆锥对顶放置(两圆锥的轴重合),已知两个圆锥的底面半径均为1,母线长均为3,记过圆锥轴的平面为平面(与两个圆锥侧面的交线为),用平行于的平面截圆锥,该平面与两个圆锥侧面的交线即双曲线的一部分,且双曲线的两条渐近线分别平行于,则双曲线的离心率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C的参数方程为(m为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线的极坐标方程为
(1)求曲线C和直线的直角坐标系方程;
(2)已知直线与曲线C相交于A,B两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知抛物线的标准方程为,其中为坐标原点,抛物线的焦点坐标为,为抛物线上任意一点(原点除外),直线过焦点交抛物线于点,直线过点交抛物线于点,连结并延长交抛物线于点.
(1)若弦的长度为8,求的面积;
(2)求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在棱长为4的正方体中,点M是正方体表面上一动点,则下列说法正确的个数为( )
①若点M在平面ABCD内运动时总满足,则点M在平面ABCD内的轨迹是圆的一部分;
②在平面ABCD内作边长为1的小正方形EFGA,点M满足在平面ABCD内运动,且到平面的距离等于到点F的距离,则M在平面ABCD内的轨迹是抛物线的一部分;
③已知点N是棱CD的中点,若点M在平面ABCD内运动,且平面,则点M在平面内的轨迹是线段;
④已知点P、Q分别是,的中点,点M为正方体表面上一点,若MP与CQ垂直,则点M所构成的轨迹的周长为.
A.1B.2C.3D.4
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com