精英家教网 > 高中数学 > 题目详情
以F1、F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)上顶点P,当∠F1PF2=120°时,则此椭圆离心率e的大小为
3
2
3
2
分析:利用焦点三角形,确定b,c的关系,进而可得a,c的关系,从而可得椭圆的离心率.
解答:解:∵以F1、F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)上顶点P,∠F1PF2=120°
tan60°=
c
b

c=
3
b

∴c2=3(a2-c2
c
a
=
3
2

∴e=
3
2

故答案为:
3
2
点评:本题考查椭圆的离心率,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知P是以F1,F2为焦点的椭圆
x2
a2
+
y2
b2
=1(a>b>0)上的一点,若PF1⊥PF2,tan∠PF1F2=
1
2
,则此椭圆的离心率为(  )
A、
1
2
B、
2
3
C、
1
3
D、
5
3

查看答案和解析>>

科目:高中数学 来源: 题型:

点P在以F1、F2为焦点的双曲线
x2
3
-
y2
9
=1
上运动,则△PF1F2的重心G的轨迹方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴,垂足为T,与抛物线交于不同的两点P、Q且
F1P
F2Q
=-5

(1)求点T的横坐标x0
(2)若以F1,F2为焦点的椭圆C过点(1,
2
2
)

①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•淄博二模)已知抛物线y2=4x的焦点为F2,点F1与F2关于坐标原点对称,直线m垂直于x轴(垂足为T),与抛物线交于不同的两点P、Q且
F1P
F2Q
=-5

(I)求点T的横坐标x0
(II)若以F1,F2为焦点的椭圆C过点(1,
2
2
)

①求椭圆C的标准方程;
②过点F2作直线l与椭圆C交于A,B两点,设
F2A
F2B
,若λ∈[-2,-1],求|
TA
+
TB
|
的取值范围.

查看答案和解析>>

同步练习册答案