精英家教网 > 高中数学 > 题目详情
15.已知不等式组$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面区域为D,若?(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围是(  )
A.[10,+∞)B.[11,+∞)C.[13,+∞)D.[14,+∞)

分析 画出约束条件的可行域,求出|x|+2y的最大值,即可得到?(x,y)∈D,|x|+2y≤a为真命题,实数a的取值范围.

解答 解:不等式组$\left\{\begin{array}{l}{y≤5}&{\;}\\{2x-y+3≤0}&{\;}\\{x+y-1≥0}&{\;}\end{array}\right.$表示的平面区域为D,如图:
当x≥0时,z=|x|+2y=x+2y,z=x+2y经过B时取得最大值,
由$\left\{\begin{array}{l}{y=5}\\{2x-y+3=0}\end{array}\right.$可得B(1,5),此时z的最大值为:11.
当x<0时,z=|x|+2y=-x+2y,z=-x+2y经过A时取得最大值,
由$\left\{\begin{array}{l}{y=5}\\{x+y-1=0}\end{array}\right.$,可得A(-4,5),此时z的最大值为:
14.
若?(x,y)∈D,|x|+2y≤a为真命题,则实数a的取值范围:[14,+∞).
故选:D.

点评 本题考查命题的真假的判断与应用,线性规划的简单应用,考查转化思想以及数形结合思想的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.设复数z=$\frac{2i}{1+i}$,则其共轭复数为(  )
A.-1-iB.1-iC.-1+iD.1+i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cosα=$\frac{3}{5}$,α∈(π,2π),则tan(α-$\frac{3π}{4}$)=-$\frac{1}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.甲乙两位同学进行乒乓球比赛,甲获胜的概率为0.4,现采用随机模拟的方法估计这两位同学打3局比赛甲恰好获胜2局的概率:先利用计算器产生0到9之间取整数值的随机数,制定1,2,3,4表示甲获胜,用5,6,7,8,9,0表示乙获胜,再以每三个随机数为一组,代表3局比赛的结果,经随机模拟产生了30组随机数
102   231   146   027   590   763   245   207   310   386   350   481   337   286   139
579   684   487   370   175   772   235   246   487   569   047   008   341   287   114
据此估计,这两位同学打3局比赛甲恰好获胜2局的概率为(  )
A.$\frac{1}{3}$B.$\frac{3}{10}$C.$\frac{2}{5}$D.$\frac{11}{30}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知0<a<1,函数f(x)=logax.
(1)若f(5a-1)≥f(2a),求实数a的最大值;
(2)当a=$\frac{1}{2}$时,设g(x)=f(x)-3x+2m,若函数g(x)在(1,2)上有零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知命题p:实数x满足x2-5ax+4a2<0,其中a>0,命题q:实数x满足$\left\{\begin{array}{l}{{x}^{2}-2x-8≤0}\\{{x}^{2}+3x-10>0}\end{array}\right.$.
(Ⅰ)若a=1,且p∧q为真,求实数x的取值范围;
(Ⅱ)若¬p是¬q的充分不必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在△ABC中,a、b、c是角A、B、C的对边,则下列结论正确的序号是②③.
①若a、b、c成等差数列,则B=$\frac{π}{3}$;               ②若c=4,b=2$\sqrt{3}$,B=$\frac{π}{6}$,则△ABC有两解;
③若B=$\frac{π}{6}$,b=1,ac=2$\sqrt{3}$,则a+c=2+$\sqrt{3}$;     ④若(2c-b)cosA=acosB,则A=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知f(x)=2sinx+1,则f′($\frac{π}{4}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求下列直线的一个法向量、一个方向向量和斜率k(如果斜率存在的话)
(1)x-3y+5=0;
(2)y=3x+7;
(3)2x+5=0;
(4)4y+1=0.

查看答案和解析>>

同步练习册答案