【题目】如图,在五面体中,平面,平面,.
(1)求证:;
(2)若,,且二面角的大小为,求二面角的大小.
【答案】(1)证明见详解;(2).
【解析】
(1)由两条直线同时垂直平面得两直线平行,再利用线面平行的性质定理,即可证明线线平行;
(2)如图,取的中点为,连接,设与的交点为,连接,利用二面角的知识,求出,连接,再利用线面垂直推导线线垂直和二面角的知识,得出即为所求角,把对应值代入即可得答案.
(1)∵面,面,
∴
又面,面,
∴面
又面,面面,
∴
(2)设的中点为,连接,
设与的交点为,连接,
∵面,面,∴,.
∵,∴,.
又面,面,且面面.
∴二面角的平面角.
又在中,,
∴是边长为2的正三角形,
∴,
∵平面,
∴,
∵,
∴面,
由(1)知,又,,
∴四边形为正方形,
∴,又,
∴,
∴四边形为平行四边形,
∴,
∴面,
∴,
取的中点为,连接,
∴,
∵ ,
∴面,
∴,
∴即为二面角所成的平面角,
∵是边长为2的正三角形,四边形为正方形,
∴,,
∴,
∴,
∴二面角的平面角大小为.
科目:高中数学 来源: 题型:
【题目】平面上两定点,动点满(为常数).
(Ⅰ)说明动点的轨迹(不需要求出轨迹方程);
(Ⅱ)当时,动点的轨迹为曲线,过的直线与交于两点,已知点,证明:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】把方程表示的曲线作为函数的图象,则下列结论正确的是( )
①在R上单调递减
②的图像关于原点对称
③的图象上的点到坐标原点的距离的最小值为3
④函数不存在零点
A.①③B.①②③C.①③④D.①②③④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,直线的极坐标方程为.
(1)求直线与曲线的普通方程;
(2)若直线与曲线交于、两点,点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于定义在上的函数,若存在,使恒成立,则称为“型函数”;若存在,使恒成立,则称为“型函数”.已知函数.
(1)设函数.若,且为“型函数”,求的取值范围;
(2)设函数.证明:当,为“(1)型函数”;
(3)若,证明存在唯一整数,使得为“型函数”.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元五世纪,数学家祖冲之估计圆周率的值的范围是:,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】公元五世纪,数学家祖冲之估计圆周率的值的范围是:,为纪念数学家祖冲之在圆周率研究上的成就,某教师在讲授概率内容时要求学生从小数点后的6位数字1,4,1,5,9,2中随机选取两个数字做为小数点后的前两位(整数部分3不变),那么得到的数字大于3.14的概率为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: 的左、右顶点分别为,,上、下顶点分别为,,四边形的面积为,坐标原点O到直线的距离为.
(1)求椭圆C的方程;
(2)若直线l与椭圆C相交于A,B两点,点P为椭圆C上异于A,B的一点,四边形为平行四边形,探究:平行四边形的面积是否为定值?若是,求出此定值;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.
(1)若为的中点,求证:面;
(2)若二面角为,设,试确定的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com