精英家教网 > 高中数学 > 题目详情
20.求两两不同的三元实数组(x,y,z)满足{x,y,z}={$\frac{x-y}{y-z}$,$\frac{y-z}{z-x}$,$\frac{z-x}{x-y}$}.

分析 不妨设x>y>z,可得$\frac{x-y}{y-z}$=x,$\frac{y-z}{z-x}$=y,$\frac{z-x}{x-y}$=z,由此,即可得出结论.

解答 解:不妨设x>y>z,则,
$\frac{x-y}{y-z}$-$\frac{y-z}{z-x}$=$\frac{{x}^{2}+{y}^{2}+{z}^{2}-(xy+yz+xz)}{(y-z)(z-x)}$>0,
∴$\frac{x-y}{y-z}$>$\frac{y-z}{z-x}$.
同理$\frac{x-y}{y-z}$>$\frac{z-x}{x-y}$,$\frac{y-z}{z-x}$>$\frac{z-x}{x-y}$
∴$\frac{x-y}{y-z}$=x,$\frac{y-z}{z-x}$=y,$\frac{z-x}{x-y}$=z
∵xyz=$\frac{x-y}{y-z}$•$\frac{y-z}{z-x}$•$\frac{z-x}{x-y}$=1,
∴y=-$\frac{1}{1+x}$,z=-$\frac{1+x}{x}$,
∴(x,y,z)=(t,-$\frac{1}{1+t}$,-$\frac{1+t}{t}$)(t≠0,t≠-1)

点评 本题考查大小比较,考查不等式知识的运用,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=($\frac{2}{1+{e}^{x}}$-1)cosx的图象的大致形状是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设等差数列{an}中,a1,a7是方程x2-6x+4=0的两根,则a3+a4+a5=(  )
A.4B.9C.4或-2D.4或8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知不等式|x-2|>3的解集与关于x的不等式x2-ax-b>0的解集相同.
(1)求实数a,b的值;
(2)求函数f(x)=a$\sqrt{x-3}$+b$\sqrt{44-x}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设计一个从100道选择题中随机抽取20道题组成一份考卷的抽样方案.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在四棱锥P-ABCD中,AB∥CD,AB⊥AD,AB=2,AD=$\sqrt{2}$,CD=1,PA⊥平面ABCD,PA=2.
(Ⅰ)设平面PAB∩平面PCD=m,求证:CD∥m;
(Ⅱ)设点Q为线段PB上一点,且直线QC与平面PAC所成角的正切值为$\frac{\sqrt{2}}{2}$,求$\frac{PQ}{PB}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f (x)=$\left\{\begin{array}{l}{e}^x-k,x≤0\\(1-k)x+k,x>0\end{array}$  是R上的增函数,则实数k的取值范围是(  )
A.( $\frac{1}{3}$,$\frac{2}{3}$ )B.[$\frac{1}{3}$,$\frac{2}{3}$ )C.( $\frac{1}{2}$,$\frac{2}{3}$ )D.[$\frac{1}{2}$,1 )

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.下列说法及计算不正确的命题序号是④
①6名学生争夺3项冠军,冠军的获得情况共有36种;
②某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门,若要求两类课程中各至少一门,则不同的选法共有60种;
③对于任意实数x,有f(-x)=-f(x),g(-x)=g(x),且x>0,f′(x)<0,g′(x)<0,则x<0,f′(x)>0,g′(x)<0;
④${∫}_{a}^{b}$f(x)dx=${∫}_{a}^{c}$f(x)dx+${∫}_{c}^{b}$f(x)dx(a<c<b).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=ax2+bx+c,a,b,c是常数且a≠0,满足条件:f(0)=3,f(3)=6,且对任意的x∈R有f(1+x)=f(1-x).
(1)求函数f(x)的解析式;
(2)问是否存在实数m,n(m<n),使f(x)的定义域和值域分别是[m,n],[2m,2n]?若存在,求出m,n;若不存在,说明理由.

查看答案和解析>>

同步练习册答案