【题目】过椭圆右焦点的直线交椭圆与A,B两点,为其左焦点,已知的周长为8,椭圆的离心率为.
(1)求椭圆的方程;
(2)是否存在圆心在原点的圆,使得该圆任意一条切线与椭圆恒有两个交点,?若存在,求出该圆的方程;若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知分别是椭圆的左右焦点.
(Ⅰ)若是第一象限内该椭圆上的一点, ,求点的坐标.
(Ⅱ)若直线与圆相切,交椭圆于两点,是否存在这样的直线,使得?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在直三棱柱中,,,,.
(1)证明:平面;
(2)在线段上是否存在点,使得平面与平面所成的锐二面角为,若存在,求出线段的长度;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中装有9只球,其中标有数字1,2,3,4的小球各2个,标数字5的小球有1个.从袋中任取3个小球,每个小球被取出的可能性都相等,用表示取出的3个小球上的最大数字.
(1)求取出的3个小球上的数字互不相同的概率;
(2)求随机变量的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】平面直角坐标系xOy中,已知椭圆C:的离心率为,且点在椭圆C上.椭圆C的左顶点为A.
(1)求椭圆C的方程
(2)椭圆的右焦点且斜率为的直线与椭圆交于P,Q两点,求三角形APQ的面积;
(3)过点A作直线与椭圆C交于另一点B.若直线交轴于点C,且,求直线的斜率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学在生物研究性学习中,对春季昼夜温差大小与黄豆种子发芽多少之间的关系进行研究,于是他在4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下资料:
日期 | 4月1日 | 4月7日 | 4月15日 | 4月21日 | 4月30日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数y/颗 | 23 | 25 | 30 | 26 | 16 |
(1)从这5天中任选2天,求这2天发芽的种子数均不小于25的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出y关于x的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
附:回归直线的斜率和截距的最小二乘估计公式分别为,.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com