精英家教网 > 高中数学 > 题目详情

在双曲线4x2-y2=1的两条渐近线上分别取点A和B,使得|OA|•|OB|=15,其中O为双曲线的中心,则AB中点的轨迹方程是________.


分析:先由双曲线方程4x2-y2=1求出它的渐近线方程,再根据渐近线方程设A(m,2m),B(n,-2n),由于|OA|•|OB|=15,
化得:m2n2=25,设AB中点M(x,y)利用职权中点坐标公式可得4x2-y2=4mn,从而消去mn即得所求的AB中点的轨迹方程.
解答:∵双曲线4x2-y2=1,∴a2=,b2=1
∴渐近线y=2x,y=-2x,
设A(m,2m),B(n,-2n),由于|OA|•|OB|=15,
∴|OA|2•|OB|2=225,
∴(m2+4m2)(n2+4n2)=225
∴m2n2=25,
设AB中点M(x,y)
x=(m+n),y=m-n,
∴(2x)2-y2=(m+n)2-(m-n)2
4x2-y2=4mn
(4x2-y22=16m2n2=16×25,
∴4x2-y2=±20,即
故答案为:
点评:本小题主要考查双曲线的简单性质、轨迹方程等基础知识,考查运算求解能力,考查化归与转化思想.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设P(a,b)(b≠0)是平面直角坐标系xOy中的点,l是经过原点与点(1,b)的直线,记Q是直线l与抛物线x2=2py(p≠0)的异于原点的交点
(1)若a=1,b=2,p=2,求点Q的坐标
(2)若点P(a,b)(ab≠0)在椭圆
x2
4
+y2=1上,p=
1
2ab

求证:点Q落在双曲线4x2-4y2=1上
(3)若动点P(a,b)满足ab≠0,p=
1
2ab
,若点Q始终落在一条关于x轴对称的抛物线上,试问动点P的轨迹落在哪种二次曲线上,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦点和上顶点分别为F1、F2、B,我们称△F1BF2为椭圆C的特征三角形.如果两个椭圆的特征三角形是相似三角形,则称这两个椭圆为“相似椭圆”,且特征三角形的相似比即为相似椭圆的相似比.已知椭圆C1
x2
a2
+
y2
b2
=1
以抛物线y2=4
3
x
的焦点为一个焦点,且椭圆上任意一点到两焦点的距离之和为4.(1)若椭圆C2与椭圆C1相似,且相似比为2,求椭圆C2的方程.
(2)已知点P(m,n)(mn≠0)是椭圆C1上的任一点,若点Q是直线y=nx与抛物线x2=
1
mn
y
异于原点的交点,证明点Q一定落在双曲线4x2-4y2=1上.
(3)已知直线l:y=x+1,与椭圆C1相似且短半轴长为b的椭圆为Cb,是否存在正方形ABCD,使得A,C在直线l上,B,D在曲线Cb上,若存在求出函数f(b)=SABCD的解析式及定义域,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在双曲线4x2-y2=1的两条渐近线上分别取点A和B,使得|OA|•|OB|=15,其中O为双曲线的中心,则AB中点的轨迹方程是
x2
5
-
y2
20
=±1
x2
5
-
y2
20
=±1

查看答案和解析>>

科目:高中数学 来源:2010年辽宁省大连市高三双基测试数学试卷(理科)(解析版) 题型:解答题

在双曲线4x2-y2=1的两条渐近线上分别取点A和B,使得|OA|•|OB|=15,其中O为双曲线的中心,则AB中点的轨迹方程是   

查看答案和解析>>

同步练习册答案