精英家教网 > 高中数学 > 题目详情
设数列xn满足log2xn+1=1+log2xn(n∈N*),且x1+x2+…+x10=10,记xn的前n项和为Sn,则S20=
 
分析:先由log2xn+1=1+log2xn(n∈N*),找到数列{xn}是公比为2的等比数列,再代等比数列的求和公式即可.
解答:解:由log2xn+1=1+log2xn(n∈N*),得log2 
xn+1
xn
=1?
xn+1
xn
=2,即数列{xn}是公比为2的等比数列.
又x1+x2+…+x10=10,既
x1(1-210)
1-2
=10.所以S20=
x1(1-220)
1-2
=
x1(1+210)(1-210)
1-2
=10×(1+210)=10250,
故答案为:10250.
点评:本题考查了等比数列的求和公式,因为等比数列的求和公式和公比的值是否为1有关,所以在用等比数列的求和公式时,一定要先看公比是否为1,再代公式.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

设数列{xn}满足xn≠1且(n∈N*),前n项和为Sn.已知点p1(x1,S1),P2(x2,s2),…Pn(xn,sn)都在直线y=kx+b上(其中常数b,k且k≠1,b≠0),又yn=log数学公式数学公式
(1)求证:数列{xn]是等比数列;
(2)若yn=18-3n,求实数k,b的值;
(3)如果存在t、s∈N*,s≠t使得点(t,yt)和点(s,yt)都在直线y=2x+1上.问是否存在正整数M,当n>M时,xn>1恒成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2013年上海市杨浦区高考数学一模试卷(文科)(解析版) 题型:解答题

设数列{xn}满足xn≠1且(n∈N*),前n项和为Sn.已知点p1(x1,S1),P2(x2,s2),…Pn(xn,sn)都在直线y=kx+b上(其中常数b,k且k≠1,b≠0),又yn=log
(1)求证:数列{xn]是等比数列;
(2)若yn=18-3n,求实数k,b的值;
(3)如果存在t、s∈N*,s≠t使得点(t,yt)和点(s,yt)都在直线y=2x+1上.问是否存在正整数M,当n>M时,xn>1恒成立?若存在,求出M的最小值,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案