精英家教网 > 高中数学 > 题目详情

已知函数在点处的切线方程为
⑴求函数的解析式;
⑵若对于区间上任意两个自变量的值都有,求实数的最小值;
⑶若过点可作曲线的三条切线,求实数的取值范围.

(1);(2)4;(3).

解析试题分析:(1)利用切点处的切线的斜率就是切点处的导数可列关于一个的等式,再根据切点既在曲线上又在切线上又可列出关于一个的等式,联立即可解出关于,从而求出函数(2)对于区间上任意两个自变量的值都有,可转化为,再转化为,而利用导数判断单调性后易求;(3)可设切点为,求出切线方程后,将点坐标代入可得关于的三次方程,过点可作曲线的三条切线,则表示这个方程有三个不同的解,再转化为三次函数的零点的判断,可求极值用数形结合的方法解决,这是我们所熟悉的问题.
试题解析:⑴.                      2分
根据题意,得解得        3分
所以.                        4分
⑵令,即.得






1

2

 
+
 

 
+
 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若处取得极大值,求实数的值;
(2)若,求在区间上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数上是增函数,
(1)求实数的取值集合
(2)当取值集合中的最小值时,定义数列;满足,求数列的通项公式;
(3)若,数列的前项和为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(Ⅰ)设,证明:在区间内存在唯一的零点;
(Ⅱ)设,若对任意,均有,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数.
(1)当时,求函数的最大值;
(2)令其图象上任意一点处切线的斜率恒成立,求实数的取值范围;
(3)当,方程有唯一实数解,求正数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数若函数在x = 0处取得极值.
(1) 求实数的值;
(2) 若关于x的方程在区间[0,2]上恰有两个不同的实数根,求实数的取值范围;
(3)证明:对任意的正整数n,不等式都成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(I)求f(x)的单调区间;
(II)当时,若存在使得对任意的恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数,其中为常数,,函数的图像在它们与坐标轴交点处的切线分别为,且.
(1)求常数的值及的方程;
(2)求证:对于函数公共定义域内的任意实数,有
(3)若存在使不等式成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(Ⅰ)的图象关于原点对称,当时,的极小值为,求的解析式。
(Ⅱ)若上的单调函数,求的取值范围

查看答案和解析>>

同步练习册答案