精英家教网 > 高中数学 > 题目详情
7.函数f(x)=6-x-x2的单调递减区间是(  )
A.$[-\frac{1}{2},+∞)$B.$[-\frac{1}{2},2)$C.$(-∞,-\frac{1}{2}]$D.(-3,$-\frac{1}{2}]$

分析 利用二次函数的单调性即可得出.

解答 解:f(x)=6-x-x2=-$(x+\frac{1}{2})^{2}$+$\frac{25}{4}$,
∴函数f(x)的单调递减区间是$[-\frac{1}{2},+∞)$,
故选:A.

点评 本题考查了二次函数的单调性,考查了推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.求下列曲线的标准方程:
(1)与椭圆x2+4y2=16有相同焦点,过点$P(\sqrt{5},\sqrt{6})$;
(2)与椭圆$\frac{x^2}{8}$+$\frac{y^2}{4}$=1有相同的焦点,直线y=$\sqrt{3}$x为一条渐近线,求双曲线C的方程.
(3)焦点在直线3x-4y-12=0的抛物线的标准方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.下列命题中正确的是③④.(填序号)
①若直线a不在α内,则a∥α;
②若直线l上有无数个点不在平面α内,则l∥α;
③若l与平面α平行,则l与α内任何一条直线都没有公共点;
④平行于同一平面的两直线可以相交.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.数列{an}的前m项为${a_1},{a_2},…,{a_m}({m∈{N^*}})$,若对任意正整数n,有an+m=anq(其中q为常数,q≠0且q≠1),则称数列{an}是以m为周期,以q为周期公比的似周期性等比数列,已知似周期性等比数列{bn}的前4项为1,1,1,2,周期为4,周期公比为3,则数列{bn}前4t+2项的和等于$\frac{9}{2}•{3^t}-\frac{5}{2}$.(t为正整数)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{16}$=1内有一点P(1,4),一直线过点P与双曲线相交于P1,P2两点,弦P1P2被点P平分,则直线P1P2的方程为x-y+3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.曲线C1的参数方程为$\left\{\begin{array}{l}x=\sqrt{10}cosθ\\ y=sinθ\end{array}$(θ为参数),圆C2:x2+(y-6)2=2,设P,Q分别为曲线C1和圆C2上的点,则P,Q两点间的最大距离是(  )
A.5$\sqrt{2}$B.$\sqrt{46}$+$\sqrt{2}$C.7+$\sqrt{2}$D.6$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知M(-1,0),F(1,0),动点P满足$\overrightarrow{MP}•\overrightarrow{MF}=2|{\overrightarrow{FP}}|$,过F的直线交P的轨迹C于A,B两点,若AB的垂直平分线经过点Q(0,5),求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.不等式组$\left\{\begin{array}{l}x+y-3≤0\\ x-y+3≥0\\ y-1≥0\end{array}\right.$表示的平面区域的面积等于4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知k∈N*,若曲线x2+y2=k2与曲线xy=k无交点,则k=1.

查看答案和解析>>

同步练习册答案