精英家教网 > 高中数学 > 题目详情

【题目】已知ABCD是复平面内的平行四边形,且ABC三点对应的复数分别是1+3i,-i,2+i,求点D对应的复数.

【答案】3+5i

【解析】

试题法一:设的坐标为则对应的复数为,根据平行四边形的性质,对角线互相平分,即可求解的值,即可得到点对应的复数

法二:设的坐标为,由于,可得,求出的值,即可得到点对应的复数;

试题解析:

方法一 设D点对应的复数为x+yi (x,y∈R),

D(x,y),又由已知A(1,3),B(0,-1),C(2,1).

∴AC中点为,BD中点为.

平行四边形对角线互相平分,

,∴.即点D对应的复数为3+5i.

方法二 设D点对应的复数为x+yi (x,y∈R).

对应的复数为(x+yi)-(1+3i)

=(x-1)+(y-3)i,又对应的复数为(2+i)-(-i)=2+2i,

由于.∴(x-1)+(y-3)i=2+2i.

,∴.即点D对应的复数为3+5i.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD为正方形,平面PAD⊥底面ABCDPDADPD=ADE为棱PC的中点

I)证明:平面PBC⊥平面PCD

II)求直线DE与平面PAC所成角的正弦值;

III)若FAD的中点,在棱PB上是否存在点M,使得FMBD?若存在,求的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,ABBC4BB12,点EFM分别为C1D1A1D1B1C1的中点,过点M的平面α与平面DEF平行,且与长方体的面相交,交线围成一个几何图形.

1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由)

2)在图2中,求证:D1B⊥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨)标准煤的几组对照数据

(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程

(2)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(1)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?

参考公式:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图象向左平移个单位长度后所得的函数为偶函数,则关于函数下列命题正确的是( )

A. 函数在区间上有最小值 B. 函数在区间上单调递增

C. 函数的一条对称轴为 D. 函数的一个对称点为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数在点处的切线方程为

(1)求的解析式;

(2)求的单调区间;

(3)若函数在定义域内恒有成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知在中,角的对边分别为,且.

(1)求的值;

(2)若,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司将进货单价为8元一个的商品按10元一个出售,每天可以卖出100个,若这种商品的售价每个上涨1元,则销售量就减少10个.

1)求售价为13元时每天的销售利润;

2)求售价定为多少元时,每天的销售利润最大,并求最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆及点,若直线与椭圆交于点,且为坐标原点),椭圆的离心率为.

(1)求椭圆的标准方程;

(2)若斜率为的直线交椭圆于不同的两点,求面积的最大值.

查看答案和解析>>

同步练习册答案