精英家教网 > 高中数学 > 题目详情
1.用极限定义证明:$\underset{lim}{x→∞}$$\frac{1}{x}$=0.

分析 直接运用极限定义证明函数极限.

解答 证明:不妨设x>0,
任取?>0,要使|$\frac{1}{x}$-0|<?,
只要|x|>$\frac{1}{?}$,取X=$\frac{1}{?}$,
显然,对任意|x|>X,都有|$\frac{1}{x}$-0|<?成立,
所以,$\underset{lim}{x→∞}\frac{1}{x}$=0.

点评 本题主要考查了运用极限定义证明函数极限,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=ax2-2x+2,当x∈[1,4]时总有f(x)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$lo{g}_{2}[-a{x}^{2}+(a+1)x-1]$(a≠1)的定义域为集合A.
(1)若a=-1,求函数f(x)的零点;
(2)根据a的不同取值,求出集合A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知$\overrightarrow{a}$=(0,-2$\sqrt{3}}$),$\overrightarrow b$=(1,$\sqrt{3}}$),则$\overrightarrow{a}$在$\overrightarrow b$上的正射影的数量为(  )
A.$\sqrt{3}$B.3C.-$\sqrt{3}$D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.有两个质地均匀、大小相同的正四面体玩具,每个玩具的各面上分别写有数字1,2,3,4.把两个玩具各抛掷一次,向下的面的数字之和能被5整除的概率为(  )
A.$\frac{1}{16}$B.$\frac{1}{4}$C.$\frac{3}{8}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.a,b,c为三个人,命题P:“如果b的年龄不是最大的,那么a的年龄最小”和命题Q:“如果c的年龄不是最小的,那么a的年龄最大”都是真命题,则a,b,c的年龄大小顺序是(  )
A.b>a>cB.a>c>bC.c>b>aD.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.计算:$\underset{lim}{n→∞}$$\frac{1+\frac{1}{3}+\frac{1}{9}+…+\frac{1}{{3}^{n-1}}}{1+\frac{1}{2}+\frac{1}{4}+…+\frac{1}{{2}^{n-1}}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=sinωx(ω>0).
(1)当ω=2时,写出由y=f(x)的图象向右平移$\frac{π}{6}$个单位长度得到的图象所对应的函数解析式;
(2)若y=f(x)图象过点$(\frac{2π}{3},0)$,且在区间$(0,\frac{π}{3})$上是增函数,求ω的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=sin(2x+$\frac{π}{6}$).
(1)求函数f(x)的单调递增区间:
(2)若直线x=t(t∈(0,$\frac{π}{2}$)既是函数y=f(x)图象的对称轴又是函数g(x)=sin2x+acos2x图象的对称轴,求实数a的值.

查看答案和解析>>

同步练习册答案