精英家教网 > 高中数学 > 题目详情

【题目】已知抛物线的焦点为曲线的一个焦点, 为坐标原点,点为抛物线上任意一点,过点轴的平行线交抛物线的准线于,直线交抛物线于点.

(Ⅰ)求抛物线的方程;

(Ⅱ)若三个点满足,求直线的方程.

【答案】(Ⅰ) ;(Ⅱ) .

【解析】试题分析: 求出曲线的焦点,即可算出抛物线方程设直线的方程为,联立直线与抛物线方程,得,再结合,算出结果

解析:(Ⅰ)解由曲线,可得,所以曲线是焦点在轴上的双曲线,其中,故的焦点坐标分别为,因为抛物线的焦点坐标为,由题意知,得,所抛物线的方程为

(Ⅱ)设直线的方程为,联立直线与抛物线的方程得,消去

,设,由根与系数的关系得

因为,故,得,由

解得,代入,解得

的方程为,化简得

另解:如图,由,可设,则

,因为,所以

解得, ,所以,在中,

,即为直线的斜率),所以

直线的方程为,即,由于对称性知另一条直线的方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数 (其中 ).

(1)当时,若在其定义域内为单调函数,求的取值范围;

(2)当时,是否存在实数,使得当时,不等式恒成立,如果存在,求的取值范围,如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1+=1ab0)的右焦点F10),右准线lx=4.圆C2x2+y2=b2AB为椭圆上不同的两点,AB中点为M

1)求椭圆C1的方程;

2)若直线ABF点,直线OMlN点,求证:NFAB

3)若直线AB与圆C2相切,求原点OAB中垂线的最大距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图:已知四棱锥PABCD的底面ABCD是平行四边形,PA面ABCD,M是AD的中点,N是PC的中点.

(1)求证:MN面PAB;

(2)若平面PMC面PAD,求证:CMAD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来郑州空气污染较为严重,现随机抽取一年(365天)内100天的空气中指数的监测数据,统计结果如下:

空气质量

轻微污染

轻度污染

中度污染

中度重污染

重度污染

天数

4

13

18

30

9

11

15

记某企业每天由空气污染造成的经济损失为(单位:元),指数为.当在区间内时对企业没有造成经济损失;当在区间内时对企业造成经济损失成直线模型(当指数为150时造成的经济损失为500元,当指数为200时,造成的经济损失为700元);当指数大于300时造成的经济损失为2000元.

(1)试写出的表达式;

(2)试估计在本年内随机抽取一天,该天经济损失大于500元且不超过900元的概率;

(3)若本次抽取的样本数据有30天是在供暖季,其中有8天为重度污染,完成下面列联表,并判断是否有的把握认为郑州市本年度空气重度污染与供暖有关?

附:

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.32

2.07

2.70

3.74

5.02

6.63

7.87

10.828

,其中

非重度污染

重度污染

合计

供暖季

非供暖季

合计

100

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地建一座桥,两端的桥墩已建好,这两墩相距640米,余下工程只需要建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为256万元,距离为米的相邻两墩之间的桥面工程费用为万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,设需要新建个桥墩,记余下工程的费用为万元.

(1)试写出关于的函数关系式;(注意:

(2)需新建多少个桥墩才能使最小?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四棱锥中, ,且平面 是棱的中点.

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知:函数.

(1)此函数在点处的切线与直线平行,求实数的值;

(2)在(1)的条件下,若恒成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n项和为Sn,且a1=1,S3S4S5.

(1)求数列{an}的通项公式;

(2)令bn=(-1)n-1an,求数列{bn}的前2n项和T2n.

查看答案和解析>>

同步练习册答案