精英家教网 > 高中数学 > 题目详情

【题目】已知过定点的动圆是与圆相内切.

(1)求动圆圆心的轨迹方程;

(2)设动圆圆心的轨迹为曲线是曲线上的两点,线段的垂直平分线过点,求面积的最大值(是坐标原点).

【答案】(1) (2)

【解析】

(1)由题易知,可得为定值,利用椭圆的定义求得结果;

(2)设所在直线方程为椭圆联立,表示出AB的长度和到直线的距离,求得的面积,再由题k与b的关系,可得答案.

:(1)的圆心为,半径为,

设圆的半径为,由题意知点在圆内.

可得

所以点的轨迹是以,为焦点,长轴长为的椭圆,

所以动圆圆心的轨迹方程为

(2)显然不与轴垂直,设所在直线方程为可得

可得……①设,

是方程①的两不相等的实根,得

又点到直线的距离

所以的面积

由题意知,

代入上式得

(也可直接用垂直平分线过点得到关系)

时,

时,有最大值

时,

时,有最大值

所以面积的最大值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】电子计算机诞生于20世纪中叶,是人类最伟大的技术发明之一.计算机利用二进制存储信息,其中最基本单位是“位(bit)”,1位只能存放2种不同的信息:0或l,分别通过电路的断或通实现.“字节(Byte)”是更大的存储单位,1Byte=8bit,因此1字节可存放从00000000(2)至11111111(2)共256种不同的信息.将这256个二进制数中,所有恰有相邻两位数是1其余各位数均是0的所有数相加,则计算结果用十进制表示为

A. 254B. 381C. 510D. 765

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ( 为自然对数的底数).

(Ⅰ)求函数的极值;

(Ⅱ)当时,若直线与曲线没有公共点,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率,其左、右顶点分别为点,且点关于直线对称的点在直线上.

(1)求椭圆的方程;

(2)若点在椭圆上,点在圆上,且都在第一象限,轴,若直线轴的交点分别为,判断是否为定值,若是定值,求出该定值;若不是定值,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中.

(1)求的单调递增区间;

(2)当的图像刚好与轴相切时,设函数,其中,求证:存在极小值且该极小值小于.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系平面上的一列点,…,,记为,若由构成的数列满足,其中为与轴正方向相同的单位向量,则称点列.

1)判断,…,,是否为点列,并说明理由;

2)若点列.且点在点的右上方,(即)任取其中连续三点判断的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;

3)若点列,正整数,满足.求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,已知椭圆C:(ab>0)的左、右顶点分别为A1(﹣2,0),A2(2,0),右准线方程为x=4.过点A1的直线交椭圆C于x轴上方的点P,交椭圆C的右准线于点D.直线A2D与椭圆C的另一交点为G,直线OG与直线A1D交于点H.

(1)求椭圆C的标准方程;

(2)若HG⊥A1D,试求直线A1D的方程;

(3)如果,试求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点,从直线上一点P向圆引两条切线,切点分别为CD.设线段的中点为M,则线段长的最小值为______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处切线的斜率为,求此切线方程

(2)若有两个极值点,求的取值范围,并证明:

查看答案和解析>>

同步练习册答案