精英家教网 > 高中数学 > 题目详情
6.如图,在四棱锥S-ABCD中,底面梯形ABCD中,AD∥BC,平面SAB⊥平面ABCD,△SAB是等边三角形,已知$AC=2AB=4,BC=2AD=2CD=2\sqrt{5}$,M是SD上任意一点,$\overrightarrow{SM}=m\overrightarrow{MD}$,且m>0.
(1)求证:平面SAB⊥平面MAC;
(2)试确定m的值,使三棱锥S-ABC体积为三棱锥S-MAC体积的3倍.

分析 (1)在△ABC中,由已知可得AB2+AC2=BC2,得到AB⊥AC,再由面面垂直的性质可得AC⊥平面SAB,进一步得到平面SAB⊥平面MAC;
(2)由$\overrightarrow{SM}=m\overrightarrow{MD}$,可得VS-MAC=VM-SAC=$\frac{m}{m+1}•{V}_{D-SAC}=\frac{m}{m+1}•{V}_{S-ADC}$,转化为三角形的面积比,可得m=2.

解答 (1)证明:在△ABC中,由于$AB=2,AC=4,BC=2\sqrt{5}$,∴AB2+AC2=BC2,故AB⊥AC,
又平面SAB⊥平面ABCD,平面SAB∩平面ABCD=AB,AC?平面ABCD,∴AC⊥平面SAB,
又AC?平面MAC,
故平面SAB⊥平面MAC;
(2)解:在△ACD中,∵AD=CD=$\sqrt{5}$,AC=4,
∴${S}_{△ACD}=\frac{1}{2}×4×\sqrt{(\sqrt{5})^{2}-{2}^{2}}=2$,
${S}_{△ABC}=\frac{1}{2}×2×4=4$.
又∵$\overrightarrow{SM}=m\overrightarrow{MD}$,
∴VS-MAC=VM-SAC=$\frac{m}{m+1}•{V}_{D-SAC}=\frac{m}{m+1}•{V}_{S-ADC}$,
∴$\frac{{V}_{S-ABC}}{{V}_{S-AMC}}=\frac{m+1}{m}•\frac{{V}_{S-ABC}}{{V}_{S-ACD}}$=$\frac{m+1}{m}•\frac{{S}_{△ABC}}{{S}_{△ACD}}=\frac{m+1}{m}•2=3$,
即m=2.
故m的值为2.

点评 本题考查平面与平面垂直的判定,考查空间想象能力和思维能力,训练了利用等积法求多面体的体积,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.若函数$f(x)=alnx+\frac{1}{x}$在区间$({\frac{1}{2},+∞})$上单调递增,则实数a的取值范围是(  )
A.(-∞,-2]B.(-∞,-1]C.[1,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知△ABC为锐角三角形,角A,B,C所对的边分别为a,b,c,且b2-a2-c2=($\frac{cosC}{sinA}$-$\frac{sinC}{cosA}$)ac,
(1)求角A的大小;
(2)设关于角B的函数f(B)=2cosBsin(B+$\frac{π}{6}$)-2sin2B,求f(B)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x3-3x2-9x+11.
(1)写出函数f(x)的单调递增区间.
(2)讨论函数f(x)的极大值或极小值,如果有,试写出极值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点P在双曲线$\frac{x^2}{9}-\frac{y^2}{16}=1$,且|PF1|•|PF2|=32,则△PF1F2的面积等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.过原点O作圆x2+y2-8x=0的弦OA,延长OA到N,使|OA|=|AN|,求点N的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点 F 是抛物线 y2=4x的焦点,M、N 是该抛物线上两点,|MF|+|NF|=6,则 MN中点的横坐标为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知圆C:x2+(y-4)2=4,直线l过点(-2,0).
(1)当直线l与圆C相切时,求直线l的一般式方程;
(2)当直线l与圆C相交于A、B两点,且|AB|≥2$\sqrt{2}$时,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知数列{an}满足:${a_1}=2,{a_{n+1}}={a_n}^2-k{a_n}+k({k∈{N^*}}),{a_1},{a_2},{a_3}$分别是公差不为零的等差数列{bn}的前三项.
(1)求k的值;
(2)求证:对任意的n∈N*,bn,b2n,b4n不可能是等比数列.

查看答案和解析>>

同步练习册答案