精英家教网 > 高中数学 > 题目详情

已知圆和点(1)若过点有且只有一条直线与圆相切,求正实数的值,并求出切线方程;(2)若,过点的圆的两条弦互相垂直,设分别为圆心到弦的距离.
(Ⅰ)求的值;
(Ⅱ)求两弦长之积的最大值.

(Ⅰ)3(Ⅱ)10

解析试题分析:本题第(1)问,本题考查的是圆的切线方程,即直线与圆方程的应用.(要求过点M的切线l的斜率,关键是求出切点坐标,由M点也在圆上,故满足圆的方程,则易求M点坐标,然后代入圆的切线方程,整理即可得到答案;
第(2)问,由基本不等式可求出两弦长之积的最大值.
解:(1)


∴切线方程为
(Ⅰ)当都不过圆心时,
,则为矩形,

中有一条过圆心时,上式也成立
(Ⅱ)


(当且仅当时等号成立)
考点:直线和圆的方程的应用;点与圆的位置关系.
点评:本题考查直线和圆的方程的应用,着重考查分类讨论思想与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知的三个顶点,其外接圆为
(1)若直线过点,且被截得的弦长为2,求直线的方程;
(2)对于线段上的任意一点,若在以为圆心的圆上都存在不同的两点,使得点是线段的中点,求的半径的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长之比为3:1;③圆心到直线的距离为,求该圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C: 直线
(1)证明:不论取何实数,直线与圆C恒相交;
(2)求直线被圆C所截得的弦长的最小值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知圆C的半径为2,圆心在轴正半轴上,直线与圆C相切
(1)求圆C的方程;
(2)过点的直线与圆C交于不同的两点且为时,求:的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系xOy中,己知圆P在x轴上截得线段长为2,在轴上截得线段长为.
(Ⅰ)求圆心P的轨迹方程;
(Ⅱ)若P点到直线y=x的距离为,求圆P的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

求圆心在直线3x+y-5=0上,并且经过原点和点(4,0)的圆的方程

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在平面直角坐标系中,已知圆心在轴上、半径为的圆位于轴右侧,且与直线相切.
(1)求圆的方程;
(2)在圆上,是否存在点,使得直线与圆相交于不同的两点,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分10分)
如图,已知CF是以AB为直径的半圆上的两点,且CFCB,过CCD^AFAF的延长线与点D

(Ⅰ)证明:CD为圆O的切线;
(Ⅱ)若AD=3,AB=4,求AC的长.

查看答案和解析>>

同步练习册答案