精英家教网 > 高中数学 > 题目详情

【题目】已知数列{an}的前n项和

1)求数列{an}的通项公式an

2)设数列{bn}的前n项和为Tn,满足b11

①求数列{bn}的通项公式bn

②若存在pqkN*pqk,使得ambqamanbpanbk成等差数列,求m+n的最小值.

【答案】(1) an.(2) ①bn2n1;②7

【解析】

1)根据前n项和与通项的关系,即可求出通项公式;

(2)①将代入递推公式中,用裂项相消求出,再由前n项和求出通项

②由等差数列的中项性质,求出的不等量关系,结合基本不等式,即可得到最小值.

1)∵数列{an}的前n项和

∴当n1时,a1S1

n≥2时,anSnSn1

时,a1,满足上式,

an

2)①∵

=(+++…+

1

1

Tn+12n+11Tn2n1

把上面两式相减得,bn+12n

时,

时,满足上式,

②由ambqamanbpanbk成等差数列,

2amanbpambq+anbk

2

由于pqk,且为正整数,所以qp≥1kp≥2

所以mnm+n≥2m+4n

可得 mn≥2m+4n1

的最小值为12

此时

的最小值为12.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

1)讨论的单调性并指出相应单调区间;

2)若,设是函数的两个极值点,若,且恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知服从正态分布的随机变量在区间内取值的概率分别为0.6826,0.9544,0.9974.若某种袋装大米的质量(单位:)服从正态分布,任意选一袋这种大米,质量在的概率为_

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】

讨论的单调区间;

时,上的最小值为,求上的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:

项目

生产成本

检验费/次

调试费

出厂价

金额(元)

1000

100

200

3000

(Ⅰ)求每台仪器能出厂的概率;

(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);

(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出以下四个命题:

1命题,使得,则,都有

2)已知函数f(x)|log2x|abf(a)f(b)ab1

3若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β

4已知定义在上的函数 满足条件 ,且函数 为奇函数,则函数的图象关于点对称

其中真命题的序号为______________.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.

(1)求C的方程;

(2)设直线l不经过P2点且与C相交于AB两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的左、右焦点分别为,点为椭圆上任意一点,关于原点的对称点为,有,且的最大值.

(1)求椭圆的标准方程;

(2)若关于轴的对称点,设点,连接与椭圆相交于点,问直线轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,平面边上一点,.

(1)证明:平面平面.

(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.

查看答案和解析>>

同步练习册答案