【题目】已知数列{an}的前n项和.
(1)求数列{an}的通项公式an;
(2)设数列{bn}的前n项和为Tn,满足b1=1,.
①求数列{bn}的通项公式bn;
②若存在p,q,k∈N*,p<q<k,使得ambq,amanbp,anbk成等差数列,求m+n的最小值.
【答案】(1) an.(2) ①bn=2n﹣1;②7
【解析】
(1)根据前n项和与通项的关系,即可求出通项公式;
(2)①将代入递推公式中,用裂项相消求出,再由前n项和求出通项;
②由等差数列的中项性质,求出的不等量关系,结合基本不等式,即可得到最小值.
(1)∵数列{an}的前n项和.
∴当n=1时,a1=S1,
当n≥2时,an=Sn﹣Sn﹣1,
当时,a1,满足上式,
∴an.
(2)①∵
=()+()+()+…+()
1.
∴1,
∴Tn+1=2n+1﹣1,Tn=2n﹣1,
把上面两式相减得,bn+1=2n,
∴时,,
当时,满足上式,
②由ambq,amanbp,anbk成等差数列,
有2amanbp=ambq+anbk,
即2,
由于p<q<k,且为正整数,所以q﹣p≥1,k﹣p≥2,
所以mn=m+n≥2m+4n,
可得 mn≥2m+4n,1,
的最小值为12,
此时或或,
的最小值为12.
科目:高中数学 来源: 题型:
【题目】已知服从正态分布的随机变量在区间,,内取值的概率分别为0.6826,0.9544,0.9974.若某种袋装大米的质量(单位:)服从正态分布,任意选一袋这种大米,质量在的概率为_.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某仪器经过检验合格才能出厂,初检合格率为:若初检不合格,则需要进行调试,经调试后再次对其进行检验;若仍不合格,作为废品处理,再检合格率为.每台仪器各项费用如表:
项目 | 生产成本 | 检验费/次 | 调试费 | 出厂价 |
金额(元) | 1000 | 100 | 200 | 3000 |
(Ⅰ)求每台仪器能出厂的概率;
(Ⅱ)求生产一台仪器所获得的利润为1600元的概率(注:利润出厂价生产成本检验费调试费);
(Ⅲ)假设每台仪器是否合格相互独立,记为生产两台仪器所获得的利润,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出以下四个命题:
(1)命题,使得,则,都有;
(2)已知函数f(x)=|log2x|,若a≠b,且f(a)=f(b),则ab=1;
(3)若平面α内存在不共线的三点到平面β的距离相等,则平面α平行于平面β;
(4)已知定义在上的函数 满足条件 ,且函数 为奇函数,则函数的图象关于点对称.
其中真命题的序号为______________.(写出所有真命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: (a>b>0),四点P1(1,1),P2(0,1),P3(–1, ),P4(1, )中恰有三点在椭圆C上.
(1)求C的方程;
(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知椭圆的左、右焦点分别为、,点为椭圆上任意一点,关于原点的对称点为,有,且的最大值.
(1)求椭圆的标准方程;
(2)若是关于轴的对称点,设点,连接与椭圆相交于点,问直线与轴是否交于一定点.如果是,求出该定点坐标;如果不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱柱中,平面,为边上一点,,.
(1)证明:平面平面.
(2)若,试问:是否与平面平行?若平行,求三棱锥的体积;若不平行,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com