精英家教网 > 高中数学 > 题目详情

【题目】已知动点到定点的距离之和为4.

(1)求动点的轨迹方程

(2)若轨迹与直线交于两点,且的值.

(3)若点与点在轨迹上,且点在第一象限,点在第二象限,点与点关于原点对称,求证:当时,三角形的面积为定值.

【答案】(1) ;(2) ;(3)定值,见解析

【解析】

(1)求得椭圆的,即可求动点的轨迹方程
(2)将直线代入椭圆方程,可得的方程,运用韦达定理和判别式大于0,由弦长公式,解方程即可得到所求值;
(3)求出直线AB的方程,运用点到直线的距离公式求得P到直线AB的距离,弦长AB,运用三角形的面积公式可得,再由A,P满足椭圆方程,结合条件,计算即可得到三角形的面积为定值.

(1)动点Q到两定点的距离和为4,满足椭圆的定义,,
动点的轨迹方程
(2)将直线代入椭圆方程,可得
,
,解得,


即有,
解得,满足
(3)证明:直线AB的方程为,即为,
可得到直线AB的距离为,
,
,
,得 因为
可得

,可得
即有
故当,三角形的面积为定值

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

1)若函数的图象与x轴相切,求实数a的值;

2)讨论函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】目前有声书正受着越来越多人的喜爱.某有声书公司为了解用户使用情况,随机选取了名用户,统计出年龄分布和用户付费金额(金额为整数)情况如下图.

有声书公司将付费高于元的用户定义为“爱付费用户”,将年龄在岁及以下的用户定义为“年轻用户”.已知抽取的样本中有的“年轻用户”是“爱付费用户”.

(1)完成下面的列联表,并据此资料,能否有的把握认为用户“爱付费”与其为“年轻用户”有关?

爱付费用户

不爱付费用户

合计

年轻用户

非年轻用户

合计

(2)若公司采用分层抽样方法从“爱付费用户”中随机选取人,再从这人中随机抽取人进行访谈,求抽取的人恰好都是“年轻用户”的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,正方体,点分别是棱的中点,动点在线段上运动.

1)证明:平面

2)求直线与平面所成角的正弦值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,长方体ABCDA1B1C1D1中,ABBC4BB12,点EFM分别为C1D1A1D1B1C1的中点,过点M的平面α与平面DEF平行,且与长方体的面相交,交线围成一个几何图形.

1)在图1中,画出这个几何图形,并求这个几何图形的面积(不必说明画法与理由)

2)在图2中,求证:D1B⊥平面DEF

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设椭圆的右顶点为,上顶点为.已知椭圆的离心率为.

)求椭圆的标准方程;

)设直线与椭圆交于两点,且点在第二象限.延长线交于点,若的面积是面积的3倍,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知是由非负整数组成的无穷数列,对每一个正整数,该数列前项的最大值记为,第项之后各项的最小值记为,记

(1)若数列的通项公式为,求数列的通项公式;

(2)证明:“数列单调递增”是“”的充要条件;

(3)若对任意恒成立,证明:数列的通项公式为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】谈祥柏先生是我国著名的数学科普作家,他写的《数学百草园》、《好玩的数学》、《故事中的数学》等书,题材广泛、妙趣横生,深受广大读者喜爱.下面我们一起来看《好玩的数学》中谈老的一篇文章《五分钟内挑出埃及分数》:文章首先告诉我们,古埃及人喜欢使用分子为1的分数(称为埃及分数).如用两个埃及分数的和表示.100个埃及分数中挑出不同的3个,使得它们的和为1,这三个分数是________.(按照从大到小的顺序排列)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】关于圆周率,数学发展史上出现过许多有创意的求法,如著名的普丰实验和查理斯实验.受其启发,我们也可以通过设计下面的实验来估计的值:先请120名同学每人随机写下一个xy都小于1的正实数对,再统计其中xy能与1构成钝角三角形三边的数对的个数m,最后根据统计个数m估计的值.如果统计结果是,那么可以估计的值为( )

A.B.C.D.

查看答案和解析>>

同步练习册答案