精英家教网 > 高中数学 > 题目详情
(本小题满分14分)已知函数(x∈R)在区间[-1,1]上是增函数.
(Ⅰ)求实数a的值所组成的集合A;
(Ⅱ)设关于x的方程的两实数根为x1、x2,试问:是否存在实数m,使得不等式对任意a∈A及t∈[-1,1]恒成立?若存在,求出m的取值范围;若不存在,请说明理由?
(Ⅰ)A=[-1,1];
(Ⅱ)存在实数m满足题意,m的取值范围为{m| m≥2或m≤-2}
(Ⅰ)

因为函数f(x)在区间[-1,1]上是增函数,所以f(x)≥0在区间x∈[-1,1]恒成立,即有x2-ax-2≤0在区间[-1,1]上恒成立。  
构造函数g(x)=x2-ax-2
∴满足题意的充要条件是:
所以所求的集合A=[-1,1] ………(7分)
(Ⅱ)由题意得:得到:x2-ax-2=0………(8分)
因为△=a2+8>0 所以方程恒有两个不等的根为x1、x2由根与系数的关系有:……(9分)
因为a∈A即a∈[-1,1],所以要使不等式 对任意a∈A及t∈[-1,1]恒成立,当且仅当对任意的t∈[-1,1]恒成立……(11分)
构造函数φ(x)="m2+tm-2=mt+(m2-2)" ≥0对任意的t∈[-1,1]恒成立的充要条件是
 m≥2或m≤-2.故存在实数m满足题意且为{m| m≥2或m≤-2}为所求    (14分)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设定义在R上的奇函数,且对任意实数,恒有,当时,
(1)求证:是周期函数。  (2)当时求的解析式。
(3)计算……+

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数为偶函数,而且在区间[0,+∞)上是减函数.若,则x的取值范围是              .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,若,则的范围是        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知偶函数上为单调增函数,则满足取值范围是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数f(x)=x0        

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知上的偶函数,且,如果上是减函数,那么 在区间上分别是                       (   )
A.增函数和减函数B.增函数和增函数C.减函数和减函数 D.减函数和增函数

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

上定义运算:若不等式对一切实数恒成立,则实数的取值范围为                                       (       )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知               

查看答案和解析>>

同步练习册答案