精英家教网 > 高中数学 > 题目详情

【题目】已知曲线

(1)若曲线C1是一个圆,且点P(1,1)在圆C1外,求实数m的取值范围;

(2)当m=2时,曲线关于直线x+1=0对称的曲线为,设P为平面上的点,满足:存在过P点的无穷多对互相垂直的直线,它们分别与曲线C1和曲线相交,且直线被曲线C1截得的弦长与直线l2被曲线C2截得的弦长总相等.求所有满足条件的点P的坐标;

【答案】(1)(2)见解析

【解析】

(1)依题意得,解不等式组即可得解;

(2)先根据对称求得圆的方程,由两圆的半径一样所以弦长相等等价于圆心到直线距离相等,从而得设直线的斜率为则直线,同理直线,整理得,只需,求解即可.

(1)依题意得,解得,即实数的取值范围是

(2)当时,圆 ,圆心

半径,圆,圆心,半径.

因为要存在存在过P点的无穷多对互相垂直的直线

所以必有无穷多对的斜率存在.设直线的斜率为

直线,同理直线,由于两圆半径相等,

要使得直线被曲线截得的弦长与直线被曲线截得的弦长总相等,

,即

,所以

|k-2-mk+n|+(-3+2k-m-kn)=0整理得

因为对无穷个k都成立,所以

,解得

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】直线l:ax+ y﹣1=0与x,y轴的交点分别为A,B,直线l与圆O:x2+y2=1的交点为C,D.给出下列命题:p:a>0,SAOB= ,q:a>0,|AB|<|CD|.则下面命题正确的是(
A.p∧q
B.¬p∧¬q
C.p∧¬q
D.¬p∧q

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列{an}和{bn}的项数均为m,则将数列{an}和{bn}的距离定义为 |ai﹣bi|.
(1)给出数列1,3,5,6和数列2,3,10,7的距离;
(2)设A为满足递推关系an+1= 的所有数列{an}的集合,{bn}和{cn}为A中的两个元素,且项数均为m,若b1=2,c1=3,{bn}和{cn}的距离小于2016,求m的最大值;
(3)记S是所有7项数列{an|1≤n≤7,an=0或1}的集合,TS,且T中任何两个元素的距离大于或等于3,证明:T中的元素个数小于或等于16.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】据《中国新闻网》10月21日报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3600人调查,就是否“取消英语听力”的问题,调查统计的结果如下表:

态度
调查人群

应该取消

应该保留

无所谓

在校学生

2100人

120人

y人

社会人士

600人

x人

z人

已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.05.
(Ⅰ)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?
(Ⅱ)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程
以直角坐标系xOy的原点为极点,x轴的非负半轴为极轴建立极坐标系,且两坐标系相同的长度单位.已知点N的极坐标为( ),M是曲线C1:ρ=1上任意一点,点G满足 ,设点G的轨迹为曲线C2
(1)求曲线C2的直角坐标方程;
(2)若过点P(2,0)的直线l的参数方程为 (t为参数),且直线l与曲线C2交于A,B两点,求 的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列{an}中,设f(n)=an , 且f(n)满足f(n+1)﹣2f(n)=2n(n∈N*),且a1=1.
(1)设 ,证明数列{bn}为等差数列;
(2)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将参加夏令营的600名学生编号为:001,002,…,600,采用系统抽样的方法抽取一个容量为50的样本,且随机抽得的编号为003.600名学生分住在3个营区,001300住在第1营区,301495住在第2营区,496600住在第3营区,3个营区被抽中的人数依次为(  )

A. 26,16,8 B. 25,16,9

C. 25,17,8 D. 24,17,9

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处的切线的方程为,求实数的值;

(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

(3)若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某闯关游戏有这样一个环节:该关卡有一道上了锁的门,要想通过该关卡,要拿到门前密码箱里的钥匙,才能开门过关.但是密码箱需要一个密码才能打开,并且3次密码尝试错误,该密码箱被锁定,从而闯关失败.某人到达该关卡时,已经找到了可能打开密码箱的6个密码(其中只有一个能打开密码箱),他决定从中随机地选择1个密码进行尝试.若密码正确,则通关成功;否则继续尝试,直至密码箱被锁定.
(1)求这个人闯关失败的概率;
(2)设该人尝试密码的次数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案