精英家教网 > 高中数学 > 题目详情
2.已知函数y=f(x)为R上的奇函数,且x≥0时,f(x)=x2+2x-2x+1+a,则f(-1)=-1.

分析 利用函数的奇偶性,直接求解函数值即可.

解答 解:函数y=f(x)为R上的奇函数,且x≥0时,f(x)=x2+2x-2x+1+a,
可得f(0)=02+2×0-20+1+a=0,解得a=2.
x≥0时,f(x)=x2+2x-2x+1+2,
f(-1)=-f(1)=-[12+2-21+1+2]=-1.
故答案为:-1.

点评 本题考查函数的奇偶性的性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.公差不为零的等差数列{an}中,a3=9且a3,a6,a10成等比数列,
(1)求数列{an}的通项公式;
(2)求前27项的和S27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知椭圆C:$\frac{x^2}{4}$+$\frac{y^2}{2}$=1与直线L:y=x+m相交于A,B两点,O为坐标原点,则△AOB面积的最大值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)与g(x)是定义在同一区间[a,b]上的两个函数,若对任意x∈[a,b],都有|f(x)-g(x)|≤10成立,则称f(x)和g(x)在[a,b]上是“密切函数”,[a,b]称为“密切区间”,若f(x)=x3-2x+7,g(x)=x+m在[2,3]上是“密切函数”,则实数m的取值范围是(  )
A.[15,+∞)B.(-∞,19]C.(15,19)D.[15,19]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数y=-5sin($\frac{π}{6}$-3x)的频率为$\frac{3}{2π}$,,振幅为5,初相为-$\frac{π}{6}$,当x=$\frac{2π}{9}$+$\frac{2kπ}{3}$,k∈Z时,y取最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设0<x<π,则函数y=$\frac{2-cosx}{sinx}$的最小值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知方程ax2+bx+c=0(a≠0)有一非零根x1,方程-ax2+bx+c=0有一非零根x2
(1)令f(x)=$\frac{a}{2}$x2+bx+c,求证:f(x1)f(x2)<0
(2)证明:方程$\frac{a}{2}$x2+bx+c=0必有一根介于x1和x2之间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图所示,在△OAB中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}=\overrightarrow{b}$,点M是AB的靠近B的一个三等分点,点N是OA的靠近A的一个四等分点,若OM与BN相交于点P,求$\overrightarrow{OP}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)已知x<$\frac{5}{4}$,求f(x)=4x-2+$\frac{1}{4x-5}$的最大值;
(2)已知x为正实数且x2+$\frac{{y}^{2}}{2}$=1,求x$\sqrt{1+{y}^{2}}$的最大值;
(3)求函数y=$\frac{\sqrt{x-1}}{x+3+\sqrt{x-1}}$的最大值.

查看答案和解析>>

同步练习册答案