分析 利用a23+a2-1=0,a20143+a2014+1=0,两式相加,可得a2+a2014=0,再利用等差数列的求和公式,通项的性质,即可得出结论.
解答 解:∵a23+a2-1=0,a20143+a2014+1=0,
∴a23+a2-1+a20143+a2014+1=0,
∴(a2+a2014)(a22+a20142-a2a2014+1)=0,
∴a2+a2014=0,
∴a1+a2015=0,2a1008=0,∴S2015=0,a1008=0,即①②正确;
d>0,不一定正确;
∵d≠0,a1008=0,∴a1007≠0,∴;④S1006=S1007,不正确.
故答案为:①②.
点评 本题考查等差数列的求和公式,通项的性质,考查学生的计算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
A. | 若直线l平行于平面α内的无数条直线,则l∥α; | |
B. | 若α∥β,a?α,b?β,则a与b是异面直线; | |
C. | 若α∥β,a?α,则a∥β; | |
D. | 若α∩β=b,a?α,则a与β一定相交. |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | -2<t<-$\frac{4}{3}$ | B. | -2<t≤-$\frac{4}{3}$ | C. | -2≤t≤-$\frac{4}{3}$ | D. | -2≤t<-$\frac{4}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com