精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ex(其中e为自然对数的底数),g(x)= x+m(m,n∈R).
(1)若T(x)=f(x)g(x),m=1﹣ ,求T(x)在[0,1]上的最大值;
(2)若m=﹣ ,n∈N* , 求使f(x)的图象恒在g(x)图象上方的最大正整数n.[注意:7<e2 ].

【答案】
(1)解:T(x)=f(x)g(x)

=ex x+m)=ex x+1﹣ );

故T′(x)=ex x+1);

则当n≥﹣2时,T′(x)≥0;

故T(x)在[0,1]上的最大值为T(1)=e;

当n<﹣2时,x∈[0,﹣ )时,T′(x)>0;x∈(﹣ ,1]时,T′(x)<0;

T(x)在[0,1]上的最大值为T(﹣ )=﹣


(2)解:由题意,f(x)=ex,g(x)= x﹣

故f(x)的图象恒在g(x)图象上方可化为

F(x)=f(x)﹣g(x)=ex x+ >0恒成立;F′(x)=ex

故F(x)在(﹣∞,ln )上是减函数,在(ln ,+∞)上是增函数;

故可化为F(ln )>0;即 (1﹣ln )+ >0;

令G(n)= (1﹣ln )+ ;故G′(n)=﹣ (ln +1)<0;

故G(n)= (1﹣ln )+ 是[1,+∞)上的减函数,

而G(2e2)=﹣e2+ >0;G(14)=7(1﹣ln7)+ >0;

G(15)=7.5(1﹣ln7.5)+ <0;故最大正整数n为14


【解析】(1)T(x)=f(x)g(x)=ex x+m)=ex x+1﹣ );求导T′(x)=ex x+1);从而确定函数的最大值;(2)由题意,f(x)=ex,g(x)= x﹣ ;故f(x)的图象恒在g(x)图象上方可化为F(x)=f(x)﹣g(x)=ex x+ >0恒成立;从而化为最值问题.
【考点精析】本题主要考查了函数的最大(小)值与导数的相关知识点,需要掌握求函数上的最大值与最小值的步骤:(1)求函数内的极值;(2)将函数的各极值与端点处的函数值比较,其中最大的是一个最大值,最小的是最小值才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】观察下表:

1,

2,3,

4,5,6,7,

8,9,10,11,12,13,14,15,

……

问:(1)此表第n行的第一个数与最后一个数分别是多少?

(2)此表第n行的各个数之和是多少?

(3)2012是第几行的第几个数?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若集合A={1,2,3},B={(x,y)|x+y﹣4>0,x,y∈A},则集合B中的元素个数为(
A.9
B.6
C.4
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=aex﹣xlnx,其中a∈R,e是自然对数的底数.
(Ⅰ)若f(x)是(0,+∞)上的增函数,求a的取值范围;
(Ⅱ)若 ,证明:f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义在(﹣1,+∞)上的单调函数f(x),对于任意的x∈(﹣1,+∞),f[f(x)﹣xex]=0恒成立,则方程f(x)﹣f′(x)=x的解所在的区间是(
A.(﹣1,﹣
B.(0,
C.(﹣ ,0)
D.(

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某医疗科研项目对5只实验小白鼠体内的A、B两项指标数据进行收集和分析,得到的数据如下表:

指标

1号小白鼠

2号小白鼠

3号小白鼠

4号小白鼠

5号小白鼠

A

5

7

6

9

8

B

2

2

3

4

4


(1)若通过数据分析,得知A项指标数据与B项指标数据具有线性相关关系,试根据上表,求B项指标数据y关于A项指标数据x的线性回归方程 = x+
(2)现要从这5只小白鼠中随机抽取3只,求其中至少有一只B项指标数据高于3的概率. 参考公式: = = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若f(x)=sin(2x+φ)+b,对任意实数x都有f(x+ )=f(﹣x),f( )=﹣1,则实数b的值为(
A.﹣2或0
B.0或1
C.±1
D.±2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】对数列{an},如果k∈N*及λ1 , λ2 , …,λk∈R,使an+k1an+k12an+k2+…+λkan成立,其中n∈N* , 则称{an}为k阶递归数列.给出下列三个结论: ①若{an}是等比数列,则{an}为1阶递归数列;
②若{an}是等差数列,则{an}为2阶递归数列;
③若数列{an}的通项公式为 ,则{an}为3阶递归数列.
其中,正确结论的个数是(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}的前n项和Sn=an+n2﹣1,数列{bn}满足3nbn+1=(n+1)an+1﹣nan , 且b1=3,a1=3.
(1)求数列{ an}和{bn}的通项an , bn
(2)设Tn为数列{bn}的前n项和,求Tn , 并求满足Tn<7时n的最大值.

查看答案和解析>>

同步练习册答案