【题目】某儿童节在“六一”儿童节推出了一项趣味活动.参加活动的儿童需转动如图所示的转盘两次,每次转动后,待转盘停止转动时,记录指针所指区域中的数.记两次记录的数分别为x,y.奖励规则如下:
①若xy≤3,则奖励玩具一个;
②若xy≥8,则奖励水杯一个;
③其余情况奖励饮料一瓶.
假设转盘质地均匀,四个区域划分均匀,小亮准备参加此项活动.
(1)求小亮获得玩具的概率;
(2)请比较小亮获得水杯与获得饮料的概率的大小,并说明理由.
【答案】
(1)
解:两次记录的数为(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),(2,1),(3,1),(4,1),(3,2),(4,2),(4,3),共12个,
满足xy≤3,有(1,2),(1,3),(2,1),(3,1),共4个,
∴小亮获得玩具的概率为 = ;
(2)
解:满足xy≥8,(2,4),(3,4),(4,2),(4,3),共4个,∴小亮获得水杯的概率为 = ;
小亮获得饮料的概率为1﹣ ﹣ = ,
∴小亮获得水杯与获得饮料的概率相等
【解析】(1)确定基本事件的概率,利用古典概型的概率公式求小亮获得玩具的概率;(2)求出小亮获得水杯与获得饮料的概率,即可得出结论.;本题考查概率的计算,考查古典概型,确定基本事件的个数是关键.
【考点精析】利用几何概型对题目进行判断即可得到答案,需要熟知几何概型的特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等.
科目:高中数学 来源: 题型:
【题目】已知椭圆的左顶点为A,右焦点为F,过点F的直线交椭圆于B,C两点.
(1)求该椭圆的离心率;
(2)设直线AB和AC分别与直线x=4交于点M,N,问:x轴上是否存在定点P使得MP⊥NP?若存在,求出点P的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,四边形是直角梯形, , , 底面, , , 是的中点.
(1)求证:平面平面;
(2)若二面角的余弦值为,求直线与平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥V﹣ABC中,平面VAB⊥平面ABC,△VAB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,VA的中点.
(1)求证:VB∥平面MOC;
(2)求证:平面MOC⊥平面VAB
(3)求三棱锥V﹣ABC的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,直线与抛物线相交于、两点.
(1)求证:“如果直线过点,那么”是真命题;
(2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列几个命题
①方程有一个正实根,一个负实根,则;
②函数是偶函数,但不是奇函数;
③命题“若,则”的否命题为“若,则”;
④命题“,使得”的否定是“,都有”;
⑤“”是“”的充分不必要条件.
正确的是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)的定义域为(-2,2),函数g(x)=f(x-1)+f(3-2x).
(1)求函数g(x)的定义域;
(2)若f(x)是奇函数,且在定义域上单调递减,求不等式g(x)≤0的解集.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com