精英家教网 > 高中数学 > 题目详情
12.已知四面体ABCD中,AB=CD=2,E、F分别为BC、AD的中点,且异面直线AB与CD所成的角为$\frac{π}{3}$,则EF=1或$\sqrt{3}$.

分析 取BD中点O,连结EO、FO,推导出EO=FO=1,$∠EOF=\frac{π}{3}$,或$∠EOF=\frac{2π}{3}$,由此能求出EF.

解答 解取BD中点O,连结EO、FO,
∵四面体ABCD中,AB=CD=2,E、F分别为BC、AD的中点,且异面直线AB与CD所成的角为$\frac{π}{3}$,
∴EO∥CD,且EO=$\frac{1}{2}CD=1$,FO∥AB,且FO=$\frac{1}{2}AB$=1,
∴∠EOF是异面直线AB与CD所成的角,
∴$∠EOF=\frac{π}{3}$,或$∠EOF=\frac{2π}{3}$,
当∠EOF=$\frac{π}{3}$时,△EOF是等边三角形,∴EF=1.
当$∠EOF=\frac{2π}{3}$时,EF=$\sqrt{{1}^{2}+{1}^{2}-\frac{1}{2}×1×1×cos\frac{2π}{3}}$=$\sqrt{3}$.
故答案为:1或$\sqrt{3}$.

点评 本题考查线段长的示法,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.下列四个结论中正确的个数为(  )
①命题“若x2<1,则-1<x<1”的逆否命题是“若x>1或x<-1,则x2>1”
②已知p:任意x∈R,sinx≤1,q:若am2<bm2,则a<b,p且q为真命题
③命题“存在x∈R,x2-x>0”的否定是“任意x∈R,x2-x≤0”;
④“x>2”是“x2>4”的必要不充分条件.
A.0个B.1个C.2个D.3个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,甲船以每小时$30\sqrt{2}$海里的速度向正北方航行,乙船按固定方向匀速直线航行,当甲船位于A1处时,乙船位于甲船的北偏西105°方向的B1处,此时两船相距20海里,当甲船航行20分钟到达A2处时,乙船航行到甲船的北偏西120°方向的B2处,此时两船相距$10\sqrt{2}$海里,问乙船每小时航行多少海里?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知非零数列{an}满足:a1=$\frac{1}{2}$,a2=$\frac{1}{4}$,${a}_{n}^{2}$=an-1an+1(n≥2,n∈N*).设Sn为数列{bn}的前n项和,其中b1=1,$\frac{{S}_{n+1}}{n+1}$-$\frac{{S}_{n}}{n}$=1
(1)求数列{an}和{bn}的通项公式;
(2)若对任意的n∈N+.使得不等式:$\frac{{b}_{1}+1}{{a}_{1}}$+$\frac{{b}_{2}+1}{{a}_{2}}$+…+$\frac{{b}_{n}+1}{{a}_{n}}$≥$\frac{m}{{a}_{n}}$恒成立,求实教m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,Ox、Oy是平面内相交成120°的两条数轴,${\overrightarrow e_1}$,${\overrightarrow e_2}$分别是与x轴、y轴正方向同向的单位向量,若向量$\overrightarrow{OP}$=x${\overrightarrow e_1}$+y${\overrightarrow e_2}$,则将有序实数对(x,y)叫做向量$\overrightarrow{OP}$在坐标系xOy中的坐标.若$\overrightarrow{OP}$=(3,2),则|$\overrightarrow{OP}$|=$\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.tan70°cos10°+$\sqrt{3}$sin10°tan70°-2sin50°=(  )
A.-$\frac{1}{2}$B.$\frac{1}{2}$C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=ax2-1的图象在点A(1,f(1))处的切线l与直线8x-y+2=0平行,若数列$\left\{{\frac{1}{f(n)}}\right\}$的前n项和为Sn,则S2015的值为(  )
A.$\frac{4030}{4031}$B.$\frac{2014}{4029}$C.$\frac{2015}{4031}$D.$\frac{4029}{4031}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若$cosα=-\frac{5}{13}$,且α为第三象限角,则tanα的值等于(  )
A.$\frac{12}{5}$B.$-\frac{12}{5}$C.$\frac{5}{12}$D.$-\frac{5}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设不等式组$\left\{\begin{array}{l}0≤x≤2\\ 0≤y≤2\end{array}\right.$表示的平面区域为D,在区域D内随机取一点M,则点M落在圆(x-1)2+y2=1内的概率为(  )
A.$\frac{π}{8}$B.$\frac{π}{4}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步练习册答案