精英家教网 > 高中数学 > 题目详情
(2012•泉州模拟)如图l,在正方形ABCD中,AB=2,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点.将ADAE,CDCF折起,使A、C重合于A点,构成如图2所示的几何体.
(I)求证:A′D⊥面A′EF;
(Ⅱ)试探究:在图1中,F在什么位置时,能使折起后的几何体中EF∥平面AMN,并给出证明.
分析:(Ⅰ)由题意可得,A′D⊥A′E,A′D⊥A′F,A′E∩A′F=A′,利用线面垂直的判定定理即可证得结论;
(Ⅱ)当点F为BC的中点时,EF∥面A′MN.在图(1)中,E,F分别是AB,BC的中点,可得EF∥AC,而M∈AC,N∈AC,从而可得EF∥MN,继而有EF∥平面AMN.
解答:证明:(Ⅰ)∵A′D⊥A′E,A′D⊥A′F,
又A′E∩A′F=A′,A′E?面A′EF,A′F?面A′EF,
∴A′D⊥面A′EF.                             
(Ⅱ)当点F为BC的中点时,EF∥面A′MN.   
证明如下:当点F为BC的中点时,
在图(1)中,E,F分别是AB,BC的中点,
所以EF∥AC,
即在图(2)中有EF∥MN.                   
又EF?面A′MN,MN?面A′MN,
所以EF∥面A′MN.
点评:本题考查直线与平面垂直的判定与直线与平面平行的判定,正确理解题意,将图形折起是基础,熟练应用线面垂直与线面平行的判定定理是解决问题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知f0(x)=x•ex,f1(x)=f′0(x),f2(x)=f′1(x),…,fn(x)=f′n-1(x)(n∈N*).
(Ⅰ)请写出fn(x)的表达式(不需证明);
(Ⅱ)设fn(x)的极小值点为Pn(xn,yn),求yn
(Ⅲ)设gn(x)=-x2-2(n+1)x-8n+8,gn(x)的最大值为a,fn(x)的最小值为b,试求a-b的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)下列函数中,既是偶函数,且在区间(0,+∞)内是单调递增的函数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)已知集合A={1,2,3},B={x|x2-x-2=0,x∈R},则A∩B为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数f(x)=ax2+lnx.
(Ⅰ)当a=-1时,求函数y=f(x)的图象在点(1,f(1))处的切线方程;
(Ⅱ)已知a<0,若函数y=f(x)的图象总在直线y=-
12
的下方,求a的取值范围;
(Ⅲ)记f′(x)为函数f(x)的导函数.若a=1,试问:在区间[1,10]上是否存在k(k<100)个正数x1,x2,x3…xk,使得f′(x1)+f'(x2)+f′(x3)+…+f′(xk)≥2012成立?请证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•泉州模拟)设函数y=f(x)的定义域为D,若对于任意x1,x2∈D且x1+x2=2a,恒有f(x1)+f(x2)=2b,则称点(a,b)为函数y=f(x)图象的对称中心.研究并利用函数f(x)=x3-3x2-sin(πx)的对称中心,可得f(
1
2012
)+f(
2
2012
)+…+f(
4022
2012
)+f(
4023
2012
)
=(  )

查看答案和解析>>

同步练习册答案