精英家教网 > 高中数学 > 题目详情
14.如图,已知四棱锥P-ABCD的底面ABCD是边长为2的正方形,PD=1,PD⊥面ABCD,E为棱BC的中点.
(1)求四棱锥P-ABCD的体积;
(2)求异面直线PB和DE所成角的余弦值.

分析 (1)由于PD⊥面ABCD,利用VP-ABCD=$\frac{1}{3}•{S}_{正方形ABCD}•PD$,即可得出.
(2)如图所示,取AD的中点F,连接BF,PF,可得四边形BEDF是平行四边形,于是∠PBE或其补角是异面直线PB和DE所成角.在△PBF中,由余弦定理可得.

解答 解:(1)∵PD⊥面ABCD,
∴VP-ABCD=$\frac{1}{3}•{S}_{正方形ABCD}•PD$=$\frac{1}{3}×{2}^{2}×1$=$\frac{4}{3}$.
(2)如图所示,取AD的中点F,连接BF,PF.
BE$\underset{∥}{=}$DF,∴四边形BEDF是平行四边形,
∴BF$\underset{∥}{=}$DE.
∴∠PBE或其补角是异面直线PB和DE所成角.
△PBF中,BF=$\sqrt{A{B}^{2}+A{F}^{2}}$=$\sqrt{5}$,PF=$\sqrt{P{D}^{2}+D{F}^{2}}$=$\sqrt{2}$,PB=$\sqrt{P{D}^{2}+D{B}^{2}}$=$\sqrt{1+(2\sqrt{2})^{2}}$=3.
由余弦定理可得:cos∠PBF=$\frac{{3}^{2}+(\sqrt{5})^{2}-(\sqrt{2})^{2}}{2×3×\sqrt{5}}$=$\frac{2\sqrt{5}}{5}$.

点评 本题考查了线面垂直的性质定理、异面直线所成的角、三棱锥的体积计算公式、余弦定理、勾股定理,考查了空间想象能力、推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知集合A={x|2≤x≤8},B={x|1<x<6},U=R.
求A∪B,A∩B,(∁UA)∩B,∁U(A∪B).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x2-(a+2)x+a.
(Ⅰ)当a>0时,求关于x的不等式f(x)>0解集;
(Ⅱ)当x>1时,若f(x)≥-1恒成立,求实数a的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.函数f(x)=sin(ωx+φ)(其中ω>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,则ω,φ的值为(  )
A.2,$\frac{π}{3}$B.2,-$\frac{π}{3}$C.4,$\frac{π}{3}$D.4,-$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知P为双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的左支上一点,F1,F2分别是它的左右焦点,直线PF2与圆:x2+y2=a2相切,切点为线段PF2的中点,则该双曲线的离心率为$\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知f(x)是定义在R上的偶函数,当x≥0时,f(x)=x2-4x.
(1)求x∈[0,5]时,求f(x)的值域;
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.甲箱子里装有3个白球m个黑球,乙箱子里装有m个白球,2个黑球,在一次试验中,分别从这两个箱子里摸出一个球,若它们都是白球,则获奖
(1)当获奖概率最大时,求m的值;
(2)在(1)的条件下,班长用上述摸奖方法决定参加游戏的人数,班长有4次摸奖机会(有放回摸取),当班长中奖时已试验次数ξ即为参加游戏人数,如4次均未中奖,则ξ=0,求ξ的分布列和Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.执行如图所示的程序框图,若输入n的值为7,则输出s的值为8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用函数单调性的定义证明:函数$f(x)=\frac{x+1}{x-1}$在区间[2,6]上是减函数.

查看答案和解析>>

同步练习册答案