精英家教网 > 高中数学 > 题目详情

【题目】已知函数f(x)=ax﹣1(a>0,且a≠1),当x∈(0,+∞)时,f(x)>0,且函数g(x)=f(x+1)﹣4的图象不过第二象限,则a的取值范围是( )
A.(1,+∞)
B.
C.(1,3]
D.(1,5]

【答案】D
【解析】解:当a>1时,函数f(x)在(0,+∞)上单调递增,f(x)=ax﹣1>0;
当0<a<1时,函数f(x)在(0,+∞)上单调递减,f(x)=ax﹣1<0,舍去.
故a>1.
∵函数g(x)=f(x+1)﹣4的图象不过第二象限,
∴g(0)=a1﹣5≤0,
∴a≤5,
∴a的取值范围是(1,5].
故选:D.
对a分类讨论:利用指数函数的单调性可得a>1.由于函数g(x)=ax+1﹣5的图象不过第二象限,可得g(0)≤0,求解即可得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图四棱锥P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AD⊥CD,且AD=CD=2 ,BC=4 ,PA=2,点M在线段PD上.

(1)求证:AB⊥PC.
(2)若二面角M﹣AC﹣D的大小为45°,求BM与平面PAC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=lnx.
(1)求函数g(x)=f(x+1)﹣x的最大值;
(2)若对任意x>0,不等式f(x)≤ax≤x2+1恒成立,求实数a的取值范围;
(3)若x1>x2>0,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+2ax+2,x∈[﹣5,5].
(1)当a=﹣1时,求函数f(x)的单调递增区间;
(2)求实数a的取值范围,使y=f(x)在区间[﹣5,5]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=tx,(x∈R).
(1)若t=ax+b,a,b∈R,且﹣1≤f(﹣1)≤2,2≤f(1)≤4,求点(a,b)的集合表示的平面区域的面积;
(2)若t=2+ ,(x<1且x≠0),求函数f(x)的最大值;
(3)若t=x﹣a﹣3(a∈R),不等式b2+c2﹣bc﹣3b﹣1≤f(x)≤a+4(b,c∈R)的解集为[﹣1,5],求b,c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017广东佛山二模】已知椭圆)的焦距为4,左、右焦点分别为,且与抛物线的交点所在的直线经过.

(Ⅰ)求椭圆的方程;

(Ⅱ)分别过作平行直线,若直线交于两点,与抛物线无公共点,直线交于两点,其中点轴上方,求四边形的面积的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中正确的是(
A. 的最小值是2
B. 的最小值是2
C. 的最小值是
D. 的最大值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公差不为零的等差数列{an}中,a3=7,又a2 , a4 , a9成等比数列.
(1)求数列{an}的通项公式.
(2)设bn=2 ,求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设 =(1,﹣2), =(a,﹣1), =(﹣b,0)(a>0,b>0,O为坐标原点),若A、B、C三点 共线,则 的最小值是(
A.4
B.
C.8
D.9

查看答案和解析>>

同步练习册答案