精英家教网 > 高中数学 > 题目详情

【题目】某研究机构对高三学生的记忆力x和判断力y进行统计分析,得下表数据:

x

6

8

10

12

y

2

3

5

6

(1)请在图中画出上表数据的散点图;

请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程

试根据求出的线性回归方程,预测记忆力为9的同学的判断力.

相关公式:

【答案】(1)见解析;(2);(3)4.

【解析】试题分析:

把所给的四对数据写成对应的点的坐标,在坐标系中描出来即可得到散点图.

由题意求出横标和纵标的平均数,求出系数,再求出的值,即可得到回归方程,注意运算不要出错.

由回归直线方程预测,记忆力为9的同学的判断力约为4

试题解析:

把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如图所示:

(2)由题意得

,

∴线性回归方程为

由回归直线方程知,当时,

所以预测记忆力为9的同学的判断力约为4.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】若无穷数列{an}满足:只要ap=aq(p,q∈N*),必有ap+1=aq+1 , 则称{an}具有性质P.
(1)若{an}具有性质P,且a1=1,a2=2,a4=3,a5=2,a6+a7+a8=21,求a3
(2)若无穷数列{bn}是等差数列,无穷数列{cn}是公比为正数的等比数列,b1=c5=1;b5=c1=81,an=bn+cn , 判断{an}是否具有性质P,并说明理由;
(3)设{bn}是无穷数列,已知an+1=bn+sinan(n∈N*),求证:“对任意a1 , {an}都具有性质P”的充要条件为“{bn}是常数列”.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别是a,b,c,且 + =
(1)证明:sinAsinB=sinC;
(2)若b2+c2﹣a2= bc,求tanB.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=ex+x﹣2,g(x)=lnx+x2﹣3,若实数a,b满足f(a)=0,g(b)=0,则(
A.0<g(a)<f(b)
B.f(b)<g(a)<0
C.f(b)<0<g(a)
D.g(a)<0<f(b)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】实数ab满足ab>0ab,由ab按一定顺序构成的数列(  )

A. 可能是等差数列,也可能是等比数列

B. 可能是等差数列,但不可能是等比数列

C. 不可能是等差数列,但可能是等比数列

D. 不可能是等差数列,也不可能是等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆E的方程: ,P为椭圆上的一点(点P在第三象限上),圆P 以点P为圆心,且过椭圆的左顶点M与点C(﹣2,0),直线MP交圆P与另一点N.

(1)求圆P的标准方程;
(2)若点A在椭圆E上,求使得 取得最小值的点A的坐标;
(3)若过椭圆的右顶点的直线l上存在点Q,使∠MQN为钝角,求直线l斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)设a>﹣1,且当 时,f(x)≤g(x),求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数.

(1)若方程上有根,求实数的取值范围;

(2)若对任意的都有求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求的极值;

(2)请填好下表(在答卷),并画出的图象(不必写出作图步骤);

(3)设函数的图象与轴有两个交点,求的值。

查看答案和解析>>

同步练习册答案