精英家教网 > 高中数学 > 题目详情
在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(1)求数列{an}与{bn}的通项公式;
(2)令cn=an•bn,求数列{cn}的前n项和Tn
【答案】分析:(1)由条件得:,解方程可求d,q进而可求an,bn
(2)由Tn=c1+c2+c3+…+cn,可考虑利用错位相减求和即可求Tn
解答:解:(1)由条件得:
(2)Tn=c1+c2+c3+…+cnTn=a1b1+a2b2+a3b3+…+an-1bn-1+anbn①qTn=a1b2+a2b3+a3b4+…+an-1bn+anbn+1
①-②:
即  
∴Tn=(n-1)6n+1
点评:本题主要考查了利用数列的基本量(公差d,公比q)表示数列的通项,错位相减求解数列的和是数列求和的一个难点,要注意掌握.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}中,若Sn是{an}的前n项和,则数列S6-S3,S9-S6,S12-S9…也成等差数列,且公差为9d.类比上述结论,相应地在公比为q(q≠0,1)的等比数列{bn}中,若Tn是{bn}的前n项积,则有
T6
T3
T9
T6
T12
T9
也成等比数列,且公比为q9
T6
T3
T9
T6
T12
T9
也成等比数列,且公比为q9

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}及公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3,则d=
5
5
;q=
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,已知a1=b1=1,a2=b2,a8=b3
(Ⅰ)求数列{an}与{bn}的通项公式;
(Ⅱ)是否存在常数a,b,使得对于一切正整数n,都有an=logabn+b成立?若存在,求出常数a和b,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}中,若Sn是{an}的前n项和,则数列S20-S10,S30-S20,S40-S30,也成等差数列,且公差为100d,类比上述结论,相应地在公比为q(q≠1)的等比数列{bn}中,
T20
T10
T30
T20
T40
T30
,也成等比数列,且公比为q100
T20
T10
T30
T20
T40
T30
,也成等比数列,且公比为q100
若Tn是数列{bn}的前n项积,则有
T20
T10
T30
T20
T40
T30
,也成等比数列,且公比为q100

查看答案和解析>>

科目:高中数学 来源: 题型:

在公差为d(d≠0)的等差数列{an}和公比为q的等比数列{bn}中,a2=b1=3,a5=b2,a14=b3
(1)求数列{an}与{bn}的通项公式;
(2)令cn=ban,求数列{cn}的前n项和Tn

查看答案和解析>>

同步练习册答案