精英家教网 > 高中数学 > 题目详情
18.若偶函数f(x)在[1,2]上为增函数,且有最小值0,则它在[-2,-1]上(  )
A.是减函数,有最小值0B.是增函数,有最小值0
C.是减函数,有最大值0D.是增函数,有最大值0

分析 根据偶函数在关于原点对称的区间上单调性相反,可知f(x)在区间1,2]上的单调性,再由所给最小值为0,可求f(x)在[-2,-1]上的最值.

解答 解:因为f(x)在[1,2]上为增函数,且有最小值0,所以f(1)=0,
又f(x)为偶函数,所以f(x)在[-2,-1]上单调递减,f(x)≥f(-1)=f(1)=0.
即f(x)在区间[-2,-1]上的最小值为0,
综上,f(x)在区间[-2,-1]上单调递减,且最小值为0.
故选:A.

点评 本题考查函数的奇偶性、单调性及其应用,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.从某企业的一种产品中抽取40件产品,测量其某项质量指标,测量结果的频率分布直方图如图所示.
(Ⅰ)求这40件样本该项质量指标的平均数$\overline{x}$;
(Ⅱ)从180(含180)以上的样本中随机抽取2件,记质量指标在[185,190]的件数为X,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(1)某校夏令营有2名男同学和2名女同学,现从这4名同学中随机选出2人参加知识竞赛(每人被选中的可能性相同).设M为事件“选出的2人中有1名男同学和1名女同学”,求事件M发表的概率.
(2)已知函数f(x)=ax+$\frac{4}{x}$,从区间(-2,2)内任取一个实数a,设事件A={函数y=f(x)-2在区间(0,+∞)上有两个不同的零点},求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在△ABC中,内角A,B,C的对边分别为a,b,c,△ABC的面积为S,且满足$\frac{cosB}{cosC}=-\frac{b}{2a+c}$.
(1)求B的大小;
(2)若a=2,$S=\sqrt{3}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\frac{1}{{\sqrt{3-x}}}$的定义域为M,g(x)=$\sqrt{x+1}$的定义域为N,则M∩N=(  )
A.{x|x≥-1}B.{x|x<3}C.{x|-1<x<3}D.{x|-1≤x<3}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}\frac{2}{x},x≥2\\{log_2}x,x<2\end{array}$,若函数y=f(x)-k有两个零点,则实数k的取值范围是(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知幂函数y=f(x)的图象过点$(3,\sqrt{3})$,则f(8)=$2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.椭圆中心在原点,一个焦点F($\sqrt{2}$,0),且定点P(1,0)到椭圆上各点距离的最小值为$\frac{\sqrt{2}}{2}$,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知实数a>0,函数f(x)=ax(x-2)2(x∈R)有极大值3.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)求实数a的值.

查看答案和解析>>

同步练习册答案